
Kismet: A Small Social Simulation Language

Adam Summerville
California State Polytechnic University, Pomona

asummerville@cpp.edu

Ben Samuel
University of New Orleans

bsamuel@cs.uno.edu

Abstract

Social simulation has been a popular domain in com-
putational creativity for decades. However, while it has
been used in applications that are easily digestible by
end users (e.g., stories, games, theatrical performances,
audio plays), it has typically not been modifiable or au-
thorable for people who are not the original developers.
Towards addressing this, we present Kismet, a small so-
cial simulation language. While Kismet is not as pow-
erful as other social simulation approaches, it leverages
computational machinery (such as an inheritance sys-
tem) and is authored using natural language inspired
sytax that is designed to be end user facing. The ulti-
mate goal of Kismet is to facilitate the authoring of sce-
nario content modules, such as those used in table-top
role-playing games.

Introduction
Since Meehan (Meehan 1977) developed TALE-SPIN, so-
cial simulation has seen a number of different applications
for creative ends. These creative applications have ranged
from games (Mateas and Stern 2003; McCoy et al. 2012;
Guimarães, Santos, and Jhala 2017), to theatrical perfor-
mance (Samuel et al. 2016b), to podcast audio plays (Ryan
2018).

The use of artificial techniques to enhance and improve
table-top role playing games (TTRPGs) is a recent devel-
opment, with approaches ranging from using constraint sat-
isfaction to perform character and relationship construction
(Horswill 2015) to the recommendation of music dynami-
cally during a session (Padovani, Ferreira, and Lelis 2017).
However, to the authors’ knowledge, Bad News (Samuel et
al. 2016b) represents the only TTRPG (if it can be consid-
ered that) that uses social simulation. While Bad News is
an interesting experience and experiment, it is not approach-
able to lay players in the way that something like Dungeons
& Dragons (Gygax and Cook 1989) is. The game requires a
dedicated actor and “wizard” to run, and there is no way for
a player to make their own scenarios / modify the simulation
in any way.

Toward the goal of making an approachable social simu-
lation system to support other creative endeavors (TTRPGs,
videogames, etc.) that are authorable and modifiable by
people who do not have (or are in the process of acquir-

ing) Computer Science Ph.D.’s focused on artificial intelli-
gence we present Kismet – a small social simulation lan-
guage. Kismet is developed with an eye towards languages
like Tracery (Compton, Kybartas, and Mateas 2015) and In-
form 7 (Nelson 2006), as well as the casual creator frame-
work (Compton and Mateas 2015). We note that Kismet is
not as complex and deep as previous social simulations, but
this is a feature, not a detraction. Kismet is designed for
small social simulations, at a relatively low level of fidelity,
and it is designed in a way such that authoring new rules for
it is relatively simple. It does not require a specialized tool
to author for (McCoy et al. 2014), nor does it require writing
in a full-fledged programming language (Ryan et al. 2015) –
instead the language has simple, expressive syntax that can
be written in any text editor – which is later compiled before
simulation occurs. Though authoring syntax via text-editors
might give the impression that Kismet is designed for power
users, the authors believe that its syntax is far less intim-
idating than the typical high-level computer programming
language.

In this way, Kismet serves as a step towards accessible—
yet expressive—social simulation. Its natural language in-
spired syntax excels at allowing authors to define the types
of actions that simulated characters can engage in, and the
social, cultural, and personal influences (referred to in the
system as proclivities) that might sway a character to se-
lect any given action over another. Running the simulation
yields sequences of character actions that are locally believ-
able (i.e., any given action makes sense), though might lack
global coherence (i.e., the system has little machinery for
maintaining direct cause-and-effect relations between ac-
tions). However, when used in conjunction with an auto-
mated story-sifter or a human storyteller as typically found
in table-top role-playing games, Kismet’s action sequences
become the atomic raw material that other systems—human
or otherwise—can embellish upon. Though not discussed in
this paper, exciting future work remains to explore Kismet’s
affordances as a tool for co-creation and shared authorship.

In the rest of the paper, we first discuss Kismet in con-
text with existing social simulation approaches. We next de-
scribe its approach to simulation at a high level. Finally we
delve into the syntax and semantics of the language with
some worked examples.

Related Work
We motivate this work by providing an overview of inspira-
tional previous work, and discuss how it helped inform the
development of Kismet.

Social Simulations
Kismet is meant to be a simple way to author and repre-
sent social simulations. By social simulations, we refer to
representing agents (typically affectionately known as Non-
Player Characters or NPCs) whose behavior is at least in part
modeled by social considerations. There have been many
previous explorations of social simulation research with a
diverse range of application areas.

Social simulation techniques have been applied in many
serious games projects, or other applications with pedagogic
or training goals. Stacey Marsela’s PsychSim (Marsella, Py-
nadath, and Read 2004) was an early example of providing
authors with an interface to be able to cast NPCs in particu-
lar social roles with sets of behaviors associated with each.

Social relationships are at the heart of many narratives,
and as such social simulation is frequently a technique
used to create or foster dynamic and compelling interac-
tive emergent narrative experiences (Ryan 2009). Because
emergent narrative is, by definition, not explicitly embed-
ded into the experience itself, a new technique known as
story sifting (Ryan 2018) is actively being explored to dis-
cover latent narratives in generated content, such as the Felt
system (Kreminski, Dickinson, and Wardrip-Fruin 2019),
or through a process of evaluating dynamic games based
on a player’s anecdotal retelling of gameplay experiences
(Kreminski et al. 2019).

These too have frequently been made with pedagogic
aims; FearNot! (Aylett et al. 2005) and the SIREN project
(Yannakakis et al. 2010) both were developed with the goal
of promoting conflict resolution (i.e., peaceful resolutions to
bullying) for elementary school aged children. Social simu-
lation systems also drive story experiences designed for en-
tertainment. Emily Short and Richard Evans’ Versu System
(Evans and Short 2013) was used to create the ambitious
Blood and Laurels. Though not designed specifically for
social simulation, Mateas and Stern’s A Behaviorial Lan-
guage (ABL) (Mateas and Stern 2002) was used, in con-
junction with drama management techniques (Roberts and
Isbell 2008), to guide the behavior of the characters of the
interactive drama Façade (Mateas and Stern 2003).

Indeed, some interactive experiences revolve entirely
around playable social interactions. Some games, such as
the wildly popular Sims (Wright and Humble 2000) series
and the research game Prom Week (McCoy et al. 2012), are
entirely about managing aspirations and social relationships
of virtual characters. In particular, Prom Week’s “social
physics” engine, Comme il Faut (McCoy et al. 2014) its suc-
cessor, Ensemble (Samuel et al. 2015), and their metaphors
have been employed towards a variety of ends, including as
a “good stranger” training tool for soldiers deployed over-
seas (Shapiro et al. 2013), for cross-cultural competency
(Klafehn et al. 2018), and has been integrated into popu-
lar games like Skyrim through modding (Guimarães, Santos,
and Jhala 2017; Studios 2015).

In comparison to the information-dense simulation sys-
tem of Prom Week, which made use of thousands of “so-
cial influence rules” to power its characters, or the power-
ful affordances of ABL to simultaneously enforce Façade’s
strong narrative while adapting to player input, Kismet is
very simplistic. However, we claim that this simplicity is
one of Kismet’s greatest strengths, and certainly what makes
it well suited for use in casual creator systems more so
than powerful-but-weighty systems as CiF and ABL. Al-
though Kismet has no mechanisms for ensuring satisfying
dramatic arcs, it allows for users to quickly and easily spin
up and simulate virtual characters governed by simple social
laws. “Good” story content can be divined either through
the use of story sifters, or by embedding Kismet into a larger
playable experience. And though tools like Ensemble per-
mit a rich interplay of individual social forces, it typically
demands a significant authoring effort before character’s dy-
namic behaviors begin taking shape. Though driven by less
sophisticated motivations, characters in Kismet can begin
acting believably with a fraction of the initial authoring ef-
fort, resulting in a much less daunting barrier to entry for the
end user.

Though Kismet does not seek to aim to emulate the fine
degree of expressivity of these other systems, other inspira-
tions from these systems remains as future work. Namely,
many of these existing systems have companion author-
ing tools that enable non-programmers to create content for
them. Kismet has no such authoring tool, but developing
one would eliminate the need to author syntax by hand, and
would no doubt be a boon to its use as a casual creator for
non-technical users.

Small Casual Creator Languages
Despite the popularity of the casual creator framework, there
has been a relative dearth of languages devoted to use by
casual creators. Tracery (Compton, Kybartas, and Mateas
2015) is a prime example as a language designed for ca-
sual creators and has seen wide spread use via Cheap Bots,
Done Quick! (Buckenham 2020). Tracery is a context free
grammar writing language that allows for creators to quickly
generate procedural text. Similar to Tracery is Expressionist
(Ryan et al. 2016) – another context free grammar writing
language, however a key difference between Expressionist
and Tracery is that Expressionist is designed to be used with
an associated authoring tool, while Tracery has no such bar-
rier to entry and is designed for any text editor. Though
Kismet’s current output is purely textual, grammar-based
casual creator languages such as Context Free Art (Coyne,
Lentczner, and Horigan 2010) have successfully been de-
veloped in the service of facilitating procedurally generated
graphical art.

Given the lack of casual creator languages, it is hard to
draw many conclusions, but a common thread is the use
of natural language syntax – used in both Inform 7 (Nel-
son 2006) and Imaginarium (Horswill 2019). Inform 7 is a
language/tool for authoring of parser based interactive fic-
tion that uses a very naturalistic approach. E.g., “A cheerio
is a kind of thing. There are 20 cheerios in the couch.” is
valid Inform 7 syntax. Imaginarium is a language/tool for

constraint based random generation that uses natural lan-
guage syntax. E.g., “Persian, tabby, and Siamese are kinds
of cat. A cat can be large or small. Imagine a cat.” is valid
syntax that will procedurally generate a cat. While Kismet
does not fully use natural language, there are aspects that
do utilize it, with the hope being that it leads to more read-
able/authorable/moddable code.

AI For Table-Top Experiences
Table-Top Role Playing Games (TTRPGs) have recently be-
come a focus for artificial intelligence techniques. Bardo
(Padovani, Ferreira, and Lelis 2017) is a system that listens
to TTRPG sessions and attempts to play fitting music based
on the emotional context of the current scene. E.g., if the
players are in battle with a dragon, it would try to play some-
thing fittingly action packed and epic, whereas if the players
are strolling through a forest, it might try to play something
soothing and calm. Fiascomatic (Horswill 2015) uses con-
straint satisfaction to generate characters and relationships
for games such as Fiasco – one shot TTRPGs that rely heav-
ily on the construction of characters and their interpersonal
relationships. Dear Leader’s Happy Story Time (Horswill
2016) is a completely artificial intelligence driven role play-
ing experience that generates characters, settings, and story
beats that players then act out using a constraint satisfaction
system. Dear Leader’s is a definite inspiration for Kismet
and the kind of experience it could enable; However, Dear
Leader’s content is written in ProLog, not making it suitable
for most end users to write/mod content.

We imagine one way that Kismet will be a valuable con-
tribution to AI for TTRPGs is in its capacity to facilitate
co-creation. TTRPG game masters can author Kismet con-
tent scenarios to generate small worlds with social dynam-
ics, suitable for quickly creating environments replete with
characters, relationships, and backstories that players can
explore. Though not a traditional TTRPG, mediated explo-
ration of generated worlds such as this is akin to the experi-
ence Bad News, which we describe below.

Bad News
Perhaps Kismet’s greatest influence is Bad News (Samuel et
al. 2016b), which leverages the Talk of the Town simulation
engine (Ryan et al. 2015). Bad News is a computationally
assisted performance (Samuel et al. 2016a); an installation
piece which combines procedural generation, social simula-
tion, and live performance. In Bad News, Talk of the Town
simulates nearly a century and a half of quotidian life in a
generated, small American town. A performance of Bad
News primarily revolves around a player engaging with a
human actor, who throughout the performance may poten-
tially portray dozens of the hundreds of virtual denizens of
the town. All the while, another human performs the role
of Wizard (so named after the Wizard-of-Oz experiments of
the projects’ origin (Ryan, Summerville, and Samuel 2016)),
who performs manual story sifting to discover interesting
latent generated narrative and suggests possible moves the
actor might make to facilitate the player discovering them.
In addition, a third member of the performance serves as
the Guide, to help acclimate the player into the world of the

game, as well as explain the underlying performance and
simulation to audience members while the actor and Wizard
are occupied with the player.

This piece has been performed internationally, at game
festivals, film festivals, computer science conferences, uni-
versities, and the San Francisco Museum of Modern Art. It
has won awards at both the ACM SIGCHI conference and
the IndieCade festival of independent games. It appears to
be an experience that captures the imagination on both a
technical and emotional level. However, one of it’s greatest
strengths—the spectacle of a computer simulation and three
humans in the roles of Actor, Wizard, and Guide creating
and portraying a unique, ephemeral world for each player—
is also one of its greatest limitations. The game is an instal-
lation piece, and as such requires a hefty amount of logistics
to be performed, severely limiting the number of people who
could ever experience it.

We hope that Kismet’s potential as a co-creative partner
can serve as a first step towards a “Bad News: The Home
Game.” There are many challenges to creating such a sys-
tem. However, giving players the ability to quickly and eas-
ily develop their own social simulation modules is an impor-
tant first step to achieving it. To do so will allow players to
personalize their simulated worlds with virtual denizens that
think about, care about, and behave in accordance to values
aligned with the types of story-worlds any given end user
hopes to capture.

Kismet
The goal of Kismet is to be a small language that supports
small social simulations. The core entities of the Kismet so-
cial simulation are Characters and Locations.

Unsurprisingly, characters are the most important entity
found in Kismet. A Kismet character is a set of traits and
statuses that influence their actions and the actions that oth-
ers take towards them. Traits and statuses are effectively the
same thing – a single predicate that is attached to a charac-
ter that influences how likely they are to take certain actions
– with the key difference being that traits are inherent to a
character (i.e., they are attached to the character when the
character is instantiated) while statuses are (and must) be
applied to a character during the simulation.

Traits come in two varieties – default and random. De-
fault traits are traits that are inherent to all characters in a
simulation. These can be thought of as encoding societal
norms – e.g., people are generally not rude to each other, or
people avoid incestuous relationships. Random traits are the
spice of the simulation – they provide different behavioral
patterns that let characters have personality and differentia-
tion – and each character is assigned a random number of
them. This random number is configurable by an end user
/ module author, but in practice we have found three to five
to be an effective number that allows for enough personality,
while still being understandable by an end user.

Some traits do not make sense in conjunction with each
other – e.g., a character can not be both a drunkard and a
teetotaler or a character can not be both serene and rage-
filled simultaneously. To account for this, traits can be stated

to be in opposition to each other, so that a character can have
only one of those traits.

The other major class of entity are locations. Locations
are where the simulation takes place. Each location has a
number of roles that the location supports, each of which can
support a different number of characters. E.g, a grocery store
might have one manager, between three and five grocers,
and up to 30 patrons. Some roles are cast upon instantiation
of the location (which is the instantiation of the simulation)
while others are cast and recast every tick of the simulation.
Some actions are only available to certain roles, and only
when the character enacting that role is at the location where
they enact that role – e.g., a character might perform the
action “tend bar” if they are enacting the role of bartender at
the bar where they work.

To save on duplication of effort, roles have a form of in-
heritance. Roles can inherit all of the preconditions and
tags of their ancestors, minimizing the burden of author-
ing many different roles. E.g., the role of bartender
might inherit from standard-labor which inherits
from labor. labor might have the tag work which
standard-labor and bartender both inherit. Con-
sequently, perhaps standard-labor might have the pre-
condition that the character enacting the role must be older
than 18 years old. This allows for a split in the inheritance
of labor where child-labor inherits from labor but
requires the character be less than 18 years old.

These pieces come together in the simulation. At initial-
ization, a number of characters are instantiated – and their
personality traits are chosen.Then the locations are spawned
– each of which cast their initial roles. During each tick
of the simulation, the characters choose which location they
should go to. Once there, they choose which action to take
based on their traits, statuses, and the other characters (who
may be colocated, located elsewhere, or unspecified).

The actions are the most important aspect of the simula-
tion. They are how the characters and their relationships
evolve during the course of the simulation. It is the his-
tory of these actions and the resultant relationships that form
the material that end users mine from. Each action has a
number of tags that describe how the action should be in-
terpreted by the characters. E.g., the action gossip might
have the tags talk and rude. A character with the trait
introvert might be less likely to take talk actions, so
they would be less likely to take the gossip action. Sim-
ilarly, a polite person may be less likely to take rude
actions. Thus, a polite introvert would be highly
unlikely to gossip, while an impolite extrovert
would be more likely to take the action.

While the tags – in concert with the character traits – af-
fect how likely a character will be to take a certain action,
there are also binary conditions that affect whether a given
action can even be attempted. Actions all have an enactor
that needs to be cast, but they can have any number of targets
– those who the actions are performed upon – and subjects
– those who the actions are about. E.g., the gossip action
would have the enactor gossiper, target gossipee, and
subject gossiped-about.

The action also has a set of preconditions that must be met

for the action to be possible. These conditions can be of:
• Unary Arity – is a fact true about a single character – e.g.,

A is drunk
• Binary Arity – i.e., is there a relation between two char-

acters – e.g., A likes B
• Arbitrary Arity – is there a relation that holds over multi-

ple characters – e.g., love-triangle(A,B,C)
All of the preconditions must be true, i.e. they are all con-
nected via logical and. To author an or, one would need to
create two nearly identical actions that differ only in those
preconditions. The results of the action are two-fold. First,
the action occurs and is recorded in the history of the simu-
lation – which can be used by end users as well as the sim-
ulation to check for certain relationships. The actions are
also observed by bystanders, based on how noticeable they
were. Two characters chit-chatting is not particularly engag-
ing, so it might not be observed, while two characters get-
ting in a fistfight is going to be observed by everyone at the
same location. Second, the actions can add or delete statuses
and relations. E.g., the action drink might apply the status
drunk which can have downstream impacts, while the ac-
tion sober-up might remove the drunk status. Similarly,
the action of A flirting with B might add the relation B
likes A, while the action break-up might remove the
relation dating.

The aim of these small simulations is to provide a scaf-
folding for further downstream processes (e.g., Table-Top
Role Players) to embellish upon. This leads to a design
decision where the characters have somewhat caricaturish
personality traits – e.g., a drunk is much more likely to go
and drink at a bar – and the actions that the characters take
are to be seen as simplified stand-ins – e.g., “drink at bar”
should not be interpreted as a person getting a single drink,
but rather could be interpreted as “wasted the afternoon get-
ting drunk at the bar.” Furthermore, the goal is that the lan-
guage allows for end users to modify scenario modules, and
possibly create their own. To this end, the language has been
designed to be approachable, using some standard program-
ming syntax, but more heavily inspired by natural language
approaches like Imaginarium and Inform 7.

Language Description
In this section we will describe the language – first starting
with some syntax. Some notes about Kismet syntax: (1)
variables are upper cased, (2) definition names are lower
cased, (3) lists are separated with commas (4) the compo-
nents of a definition are separated with semi-colons , and (5)
definitions are ended with periods. Argument lists of char-
acters use special syntax to define who is the enactor (>), the
target (<), the subject (ˆ), or an action (*). Also, anything
in bold below is a keyword in Kismet.

Random selections are contained in square brackets:

[]

These can be ranges of natural numbers:

[0 - 10]

or text strings separated by |’s

[heads | tails]

Text strings can reference Tracery grammars (in separate
files) using the standard hashtag syntax:

[#coin toss# | #dice roll#]

For ranges of numbers users can specify the shape
of the probability distribution using the symbols - ˆ.
[0-100]_-ˆ-_ is approximately a normal distribution
while [0-100]_-ˆ has increasing probability for select-
ing larger numbers.

A location is specified with the location keyword:

location LOCATION-TYPE:
supports: LIST OF ROLES;
name: TEXT;
initialization: LIST OF CAST;
each turn: LIST OF CAST.

A role is defined as the number of that kind of role that
the location supports as well as the name of the role:

[NUMBER] NAME

The cast commands are the cast keyword, the role to
cast, and the number of characters to cast in that role.
initialization is for the roles that are cast when the
location is created, and each turn is for the roles that are
cast on each turn of the simulation. Putting this all together
a description of a bar that has an owner, a few bartenders,
and a number of patrons might look like:

location bar:
supports: [1] owner, [2-3] bartender,

[1-10] patron;
name: "The #adjective# #animal#";
initialization:
cast [1] owner,
cast [1-2] bartender ;

each turn:
cast [1-10] patron .

Roles are defined with an optional extension of another
role, a set of tags that the role embodies, and the precondi-
tions required for a character to be capable of taking on that
role.

role ROLE-TYPE(CHARACTER)
[extends ROLE-TYPE]:

tags: LIST OF TAGS;
if: LIST OF PRECONDITIONS.

E.g., to represent the concept of having a job – and only
being allowed to have a single job at a time – and that bar-
tending is a kind of job one might use the following roles:

role job(>Worker):
tags: labor;
if: Worker is missing job.

role bartender(>Worker)
extends job(>Worker):

tags: drinking;
if: Worker.age >= 18.

Traits have the name (or names) of the trait and the pro-
clivities that the trait entails. Optionally, the trait can be
flagged as being default and/or the trait that is opposition to
the trait:

[default] trait NAMES [opposes NAMES]:
LIST OF PROCLIVITIES.

A proclivity is represented as the impact to how much
more or less likely a character is to take an action based on
the tags associated with the action. These proclivities can
also be conditioned on traits, statuses, and relations between
characters:

VALENCE(LIST OF TAGS
[if LIST OF CONDITIONS])

E.g., to represent the fact that there are extroverts and in-
troverts who are more or less likely to talk than others, re-
spectively, one might write:

trait extrovert/extroverted
opposes introvert/introverted:

+++(talk).

Opposition traits are defined as having the opposite va-
lence, so an identical way to represent this would be:

trait introvert/introverted
opposes extrovert/extroverted :

---(talk).

The strength of the proclivity is represented by the num-
ber of pluses or minuses. All actions are assumed to default
to a score of 0, but for all engaged proclivities the score is
modified. Traits and statuses can work in concert, or – al-
ternatively – can counteract each other. By default, an ac-
tion with two pluses is twice as likely to be selected as one
with no pluses, but the temperature of the selection (as in
simulated annealing) can be set an end user or content mod-
ule author to make their characters more or less predictable
(lower or higher temperature, respectively). The multiple
names delimited with slashes is a bit of syntactic sugar that
allows an author to use multiple names to represent the same
concept.

An example of a default trait that all characters would
have might be that people are more likely to do nice things
(and less likely to do mean things) to people that they like:
default trait kind-to-people-i-like:
+++(nice if >Self likes <Other).

This uses a conditional proclivity, such that the odds of
doing a nice action towards someone only increase if the
enactor likes the target. The greater than and lesser than
symbols tell the system how to bind to the characters in an
action.

Next, we come to actions. Actions have a name, an ar-
gument list of involved characters (and possibly historical
actions), text for how the action should be descibed, how (if
at all) the action extends another, a list of tags, constraints
on the location(s) of the characters, the visibility of the ac-
tion, the preconditions for the action, and the results of the
action.

action NAME(LIST OF CHARS)
[extends ACTION]:

“TEXT”
location: LIST OF LOCATIONS;
tags: LIST OF TAGS;
if: LIST OF PRECONDITIONS;
result: LIST OF RESULTS;

VALENCEvisibility.

E.g., a simple action like chit-chatting might look like:

action chit-chat(>Chatter,<Listener):
‘‘Chatter chats with Listener’’
location: (Chatter, Listener);
tags: talk.

Which means that chit-chat is a talk action, and that the
participants must be co-located (but that otherwise there are
no constraints on their location).

An action can also be tied to specific roles, in which case
the action must take place at the location where those people
enact those roles. E.g., a bartender might “pour the troubles
away” for a sad patron:

action pour-their-troubles-away
(>Tender:bartender,<Patron:patron):

“Tender listens to the troubles
of Patron and pours them a drink”

location: (Tender, Patron);
tags: work, drinking, talk, nice;
if: Patron is sad;
result: Patron likes Tender,

Patron is drunk.

Note, this action can only occur at a bar, since that is
where the Tender is enacting the role of bartender.

Actions can also have different levels of visibility – e.g.,
everyone is aware that a fistfight occurred in the same loca-
tion.

action fight(>Fighter,<Fightee):
“Fighter and Fightee come to blows”
location: (Fighter, Fightee);
tags: scandalous,violent, angry);
++++visibility ;
result:

Fighter and Fightee
dislike each other,

Fighter and Fightee
do not like each other.

Two notes, (1) A and B C “each other” is syntactic sugar
for A Cs B and B Cs A, (2) “do not” removes the relationship
(or fact) if it exists. We can create a more specific version of
the action if we want quite simply:

action bar-room-brawl(>Fighter,<Fightee)
extends action fight(>Fighter,<Fightee):
“A barroom brawl breaks out
between Fighter and Fightee”

location: bar(Fighter, Fightee);

The primary difference between bar-room-brawl and fight
is that bar-room-brawl specifies that the location that the
fighters are in must be a bar. The two actions also have dif-
ferent descriptions.

Finally, since the fight is a very visible, scandalous action,
it might be gossiped about by people who observed it:

action gossip(>Gossiper,<Gossipee,
Ŝubject,*Event):
“Gossiper gossips to Gossipee
about Subject”

tags: talk, rude, nosy;
if:
Gossiper knows Event,
Gossiper did not do Event,
Gossipee did not do Event,
Gossipee did not receive Event,
Subject did Event,
Event is scandalous

result: Gossipee heard Event.

Knowledge about actions can be seen (directly observed),
heard (received second-hand), did (the enactor of the ac-
tion), received (the target of the action), known (any of
seen, heard, did, or received), and forgotten (the character
no longer knows about the action). The gossiping makes
sure that people don’t gossip about their own or their tar-
get’s scandalous exploits. Further, the tags of the action can
be reasoned about as one would the status, traits, and rela-
tions of characters.

Finally, there are a syntactic sugaring shorthand patterns
that can be used in actions, traits, and other patterns – easing
the authoring burden.

For instance, a large portion of the above gossiping ac-
tion’s preconditions could be summarized as “A and B
weren’t involved in a scandalous event”. One might find
themselves using that pattern in other actions, so they could
specify:

pattern not-involved-in-scandal(>A,<B,*E):
if:
A did not do E,
B did not do E,

B did not receive E,
E is scandalous.

Which could then be reference elsewhere. These can also
be exposed to an end user, as a way to highlight potentially
juicy tidbits:

pattern love-triangle(A,B,C):
if:
A loves C,
B loves C.

or

pattern unrequited-love(A,B):
if:
A loves B,
B does not love A.

Implementation
Kismet is parsed using ANTLR4 (Parr 2013). The precon-
ditions for the actions, patterns, traits, and statuses are then
compiled to AnsProlog. Once in AnsProlog, Clingo (Gebser
et al. 2014) is used to calculate which actions are possible
and how likely a character is to take the action. This is done
by combining the event history, the current social state (com-
posed of the traits, statuses, and relationships of the charac-
ters), as well as the authored rules and solving with Clingo.
First, the proclivities are calculated to determine how likely
a character is to go to each location. These are then sampled
for each character after being transformed into a probability
distribution via the softmax function:

Pr(li) =
ewi/T

Σewj/T

Where wi is the weight assigned to going to location li.
Once characters are at a location, Clingo is once again used
to determine the proclivity weights, and an action is sampled
for each character as with the locations. Once the actions are
selected, their results are applied and the current social state
is updated. This process proceeds until one of two things
occurs – (1) most simply until a certain number of steps has
occurred or (2) until a set of conditions is met – either of
which can be set by a content module author or the end user.

Limitations and Future Work
Although a formal evaluation of Kismet has yet to take place,
some preliminary testing has transpired with an undergrad-
uate research assistant who used Kismet to create a world
of responsible business employees and casino frequenting
layabouts.

The “experimental set-up” of this preliminary work is
simple to explain: this student is a sophomore in com-
puter science, and had never been exposed to many of the
underlying principles of Kismet—such as Clingo, answer
set programming, or the very notion of a domain specific
language—prior to working on this project. However, they
did have a background in the Java programming language,
and general approaches to procedural thinking. Kismet’s

abstractions away from it’s underlying processes made it
possible for the undergraduate to design and create a social
world, which is heartening. At the same time, their attempts
to use the system highlight some of its limitations, both in
terms of expressively and accessibility. Although perhaps
having some programming experience is a requirement for
the “target user,” a mark of a successful casual creator is a
tool which is easy to jump into. Thus, points of confusion
this undergrad experienced highlight potential problem ar-
eas that future users might encounter as well, and warrant
our attention moving forward.

Some of the issues the undergraduate encountered per-
tained to simple syntax misunderstandings, though some of
these spoke to more fundamental conceptual issues. For ex-
ample, the first set of actions written had no post-conditions
specified, indicating a disconnect between recognizing a
character taking an action and the resulting underlying so-
cial state changes.

Other questions frequently revolved around the notion of
“roles” in the system. For example, in example code in-
cluded in the Kismet documentation, it introduces a location
called a bar, and says that it has one owner, two to three
bartenders, and one to ten patrons. The roles of “owner” and
“bartender” speak to one’s profession, and have an air of per-
manence to them; e.g., even as the person cast as the owner
lives their life and visits other locations, say, goes grocery
shopping, they are still a bartender even as they are a patron
of the market. However, the role of patron speaks to some-
thing much more ephemeral; even though one might always
consider themselves a patron of a spot they frequent often,
it is likely less a central part of one’s identity than the oc-
cupational roles such as bartender or owner would be. This
distinction between roles referring to professions and roles
referring to momentary qualifiers boils down to differences
between the “initialization” specification of a location, and a
location’s “each turn” specification, as described above, but
this distinction was a challenge to understand.

Other limitations centered around the notion of tags. One
such limitation is that there is currently no way to mark a
duration of a tag. For example, the undergraduate wished
to create a tag to mark a character as being “recently pro-
moted.” This should heavily influence behavior in the short
term (e.g., celebrating during the week of the promotion)
but should not influence behavior in the long term (e.g., in-
fluencing the character’s desire to celebrate years after the
promotion feels incorrect). At present, the way this is han-
dled is to have certain actions remove tags. As previously
mentioned, the “sober up” action could remove the “drunk”
tag; the tag will continue to influence the character’s behav-
ior until they happen to take the aforementioned action to
remove it.

Another limitation of tags is that they they help influence
the behavior of those who wish to take actions, but they do
not influence the selection of other non-initiating characters
in the action. This can be circumvented, however, through
clever use of traits. Though the “+” and “-” syntax is still
applying from the enactor’s perspective (i.e., making them
more or less inclined to take an action), it is possible to write
traits such as:

default traitpromote hardworkers:
+++(promotion
if <Other is hardworking).

where hardworking is a tag here applying to a character.
Still, the +++ is applying specifically to the enactor; they are
more likely to engage in promote actions if someone around
them is hardworking.

Shifting away from tags, the undergraduate was curious
about capturing a sense of operating hours for certain lo-
cations. In Bad News, which offered much inspiration for
Kismet, each simulated day was split into two time blocks:
day and night. Any given business operated either during
the day, or the night, or both day and night. At present, the
only sense of time in Kismet is the granularity with which an
author specifies actions. However, there are currently plans
to implement time cycles. A simple time cycle might look
like:

time cycle[am,pm]

Which would cycle between morning and night, and then
could become conditions for certain behaviors, e.g.,

if time is pm...

This could then be extended to nested time cycles, e.g.,

time cycle[m,t,w,th,f,sa,su][am,pm]

Which would cycle through monday am, monday pm,
tuesday am, tuesday pm, wednesday am, until eventually
wrapping back around to monday am. These cycles could be
extended indefinitely (e.g., capturing four weeks in a month,
twelve months in a year, etc.).

Another desire the undergraduate had was to design situ-
ations in which characters could either choose to go to work
or play hooky. Although this could be achieved through
traits and actions (e.g., a trait “diligent” that increases the
likelihood of taking “go to work” actions and an equivalent
“lollygagger” trait which reduces the likelihood), this still
demands that any given “work” action is then explicitly writ-
ten and given the “go to work” tag. Another piece of future
work is to implement prototypical actions (such as a generic
“work”). Connected to the notion of inheritance described
above, prototypical actions would not be directly selectable
by characters to perform but could be extended to subactions
which themselves are selectable. This ensures the tag only
need to be specified once for ease of authoring and revising,
such as:

prototype action work:
tags: go to work.

ensuring that every action which inherits from work will
have the go to work tag, without it needing to be specified
for each individual action.

An exciting next step is to begin making sample modules
and playable experiences using Kismet. This process will

undoubtedly lead to accessibility improvements, which in
turn will further enable Kismet to be adopted as a casual
creator tool.

Additionally, formal user studies with additional partici-
pants with a variety of backgrounds would further substanti-
ate the preliminary heartening observations that Kismet’s ab-
stractions permit for non-technical authors to utilize Kismet
to create meaningful or otherwise interesting stories. To this
end, additional authoring support such as an authoring tool
would provide valuable scaffolding to introduce newcomers
to the language. Lastly, a user study that compares Kismet to
other social simulation systems, such as Ensemble, could be
extremely valuable, and would validate (or invalidate) the
author’s belief that Kismet permits users to generate small
but dynamic social worlds at far quicker rate than its con-
temporaries. Such a study could begin to further explore the
trade-offs between accessibility and expressivity in social
simulation systems, and in so doing not only inspire future
directions for Kismet, but help establish goals and baselines
for any future systems that may be developed.

Conclusion
Kismet is a small language for small social simulations, with
an eye towards end user authorability. It is not as powerful
or as in-depth as other expressive social simulation, but it
is the first that has a focus on language design for novice
use. It is still relatively early in development, with addi-
tional language constructs planned. Furthermore, our belief
that Kismet is easier to use and author than other social sim-
ulations is mostly untested. In the future, we would like to
get Kismet into the hands of more novices to be able to test
this, to examine the range of social simulations they create.

References
Aylett, R. S.; Louchart, S.; Dias, J.; Paiva, A.; and Vala,
M. 2005. Fearnot!–an experiment in emergent narrative. In
International Workshop on Intelligent Virtual Agents, 305–
316. Springer.
Buckenham, G. 2020. Cheap Bots, Done Quick!
https://cheapbotsdonequick.com/.
Compton, K., and Mateas, M. 2015. Casual creators. In
Proceedings of the Sixth International Conference on Com-
putational Creativity, 228.
Compton, K.; Kybartas, B.; and Mateas, M. 2015. Trac-
ery: an author-focused generative text tool. In Interna-
tional Conference on Interactive Digital Storytelling, 154–
161. Springer.
Coyne, C.; Lentczner, M.; and Horigan, J. 2010. Context
free art. URL: www. contextfreeart. org.
Evans, R., and Short, E. 2013. Versu—a simulationist sto-
rytelling system. IEEE Transactions on Computational In-
telligence and AI in Games 6(2):113–130.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo= asp+ control: Preliminary report. arXiv
preprint arXiv:1405.3694.
Guimarães, M.; Santos, P.; and Jhala, A. 2017. Prom week
meets skyrim. In AAMAS, 1790–1792.

Gygax, G., and Cook, D. 1989. The Dungeon Master Guide,
No. 2100, 2nd Edition (Advanced Dungeons and Dragons).
TSR, Inc.
Horswill, I. D. 2015. Fiascomatic: A framework for auto-
mated fiasco playsets. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference.
Horswill, I. D. 2016. Dear leader’s happy story time: A
party game based on automated story generation. In Twelfth
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Horswill, I. 2019. Imaginarium: A tool for casual
constraint-based pcg. In Proceedings of the AIIDE Work-
shop on Experimental AI and Games (EXAG).
Klafehn, J.; Inglese, P.; Treanor, M.; and McCoy, J. 2018.
Walking a mile in simulated shoes: Development of an
assessment of perspective taking. In Proceedings of the
Eleventh annual MODSIM World Conference.
Kreminski, M.; Samuel, B.; Melcer, E.; and Wardrip-Fruin,
N. 2019. Evaluating ai-based games through retellings.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 15,
45–51.
Kreminski, M.; Dickinson, M.; and Wardrip-Fruin, N. 2019.
Felt: A simple story sifter. In International Conference on
Interactive Digital Storytelling, 267–281. Springer.
Marsella, S. C.; Pynadath, D. V.; and Read, S. J. 2004.
Psychsim: Agent-based modeling of social interactions and
influence. In Proceedings of the international conference on
cognitive modeling, volume 36, 243–248.
Mateas, M., and Stern, A. 2002. A behavior language
for story-based believable agents. IEEE Intelligent Systems
17(4):39–47.
Mateas, M., and Stern, A. 2003. Façade: An experiment in
building a fully-realized interactive drama. In Game devel-
opers conference, volume 2, 4–8.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Wardrip-
Fruin, N.; and Mateas, M. 2012. Prom week. In Proceedings
of the International Conference on the Foundations of Digi-
tal Games, 235–237.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. 2014. Social story worlds with
comme il faut. IEEE Transactions on Computational intel-
ligence and AI in Games 6(2):97–112.
Meehan, J. R. 1977. Tale-spin, an interactive program that
writes stories. In Proc. of the 5th International Joint Confer-
ence on Articial Intelligence, Aug. 1977, volume 1, 91–98.
Nelson, G. 2006. Natural language, semantic analysis, and
interactive fiction. IF Theory Reader 141:99–104.
Padovani, R. R.; Ferreira, L. N.; and Lelis, L. H. 2017.
Bardo: Emotion-based music recommendation for tabletop
role-playing games. In Thirteenth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Parr, T. 2013. The definitive ANTLR 4 reference. Pragmatic
Bookshelf.

Roberts, D. L., and Isbell, C. L. 2008. A survey and qual-
itative analysis of recent advances in drama management.
International Transactions on Systems Science and Appli-
cations, Special Issue on Agent Based Systems for Human
Learning 4(2):61–75.
Ryan, J. O.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2015. Toward characters who observe, tell, mis-
remember, and lie. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference.
Ryan, J.; Seither, E.; Mateas, M.; and Wardrip-Fruin, N.
2016. Expressionist: An authoring tool for in-game text gen-
eration. In International Conference on Interactive Digital
Storytelling, 221–233. Springer.
Ryan, J. O.; Summerville, A. J.; and Samuel, B. 2016. Bad
news: A game of death and communication. In Proceedings
of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, 160–163.
Ryan, M.-L. 2009. From narrative games to playable stories:
Toward a poetics of interactive narrative. Storyworlds: A
Journal of Narrative Studies 1:43–59.
Ryan, J. 2018. Curating simulated storyworlds. Ph.D. Dis-
sertation, UC Santa Cruz.
Samuel, B.; Reed, A. A.; Maddaloni, P.; Mateas, M.; and
Wardrip-Fruin, N. 2015. The ensemble engine: Next-
generation social physics. In Proceedings of the Tenth Inter-
national Conference on the Foundations of Digital Games
(FDG 2015), 22–25.
Samuel, B.; Ryan, J.; Summerville, A.; Mateas, M.; and
Wardrip-Fruin, N. 2016a. Computatrum personae: toward
a role-based taxonomy of (computationally assisted) perfor-
mance. In Twelfth Artificial Intelligence and Interactive Dig-
ital Entertainment Conference.
Samuel, B.; Ryan, J.; Summerville, A. J.; Mateas, M.; and
Wardrip-Fruin, N. 2016b. Bad news: An experiment in com-
putationally assisted performance. In International Confer-
ence on Interactive Digital Storytelling, 108–120. Springer.
Shapiro, D. G.; McCoy, J.; Grow, A.; Samuel, B.; Stern, A.;
Swanson, R.; Treanor, M.; and Mateas, M. 2013. Creating
playable social experiences through whole-body interaction
with virtual characters. In Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Studios, B. G. 2015. The elder scrolls v: Skyrim. Bethesda
Game Studios.
Wright, W., and Humble, L. 2000. The sims. EUA: Elec-
tronics Arts.
Yannakakis, G. N.; Togelius, J.; Khaled, R.; Jhala, A.; Kar-
pouzis, K.; Paiva, A.; and Vasalou, A. 2010. Siren: Towards
adaptive serious games for teaching conflict resolution. Pro-
ceedings of ECGBL 412–417.

