
Casual Creation, Curation, Captioning, Clustering
and Crossover in the Art Done Quick App

Simon Colton
SensiLab, Monash University, Melbourne, Australia

Game AI Group, EECS, Queen Mary University of London, UK

Abstract

We report on the latest developments with the Art Done
Quick casual creator app, which enables users to rapidly ex-
plore a space of generated images, edit, personalise and share
particular images, and curate them on a large sheet. This
has been developed with a fun-first methodology which has
thrown up a number of interesting new research problems,
but also led to the solution of a long-standing issue with the
crossover of images in Art Done Quick, which at its core is
an evolutionary art system. We describe advances in enabling
users to create more varied and interesting images, meth-
ods to enable them to curate and cluster images, a pseudo-
bullshit caption generator for fun feedback, and how we have
changed the genome representation to produce messier im-
ages via much more satisfying crossover operations.

Introduction
Art Done Quick is a casual creator app in the sense described
in (Compton and Mateas 2015) and expanded in (Compton
2019), as a creativity support tool for amateurs, where user
enjoyment is prioritised over precision control, sophistica-
tion of output and professional usage. It is an iOS app for
touchscreen devices that enables users to explore a space
of decorative images in two modalities. The first of these
is generative image evolution, with a sheet interface where
users randomly generate, mutate and crossover images. The
second enables graphic design via an edit interface that al-
lows users to post-process an image with various image fil-
ters, collaging techniques and drawing tools. As described
in detail in (Colton et al. 2020a), Art Done Quick has been
developed from the basis of an evolutionary art tool (Romero
and Machado 2007) with a fun-first methodology. This has
largely entailed (a) implementing casual creator design pat-
terns from (Compton and Mateas 2015), e.g., by giving users
fun feedback about their creations (b) identifying and min-
imising frustrations in the evolutionary art process, e.g., by
decreasing image generation times, and (c) opportunistically
implementing fun techniques that users enjoy in other casual
creators, e.g., enabling the drawing of mandala-like designs.

At every stage in the development of the app, any new
functionality and/or user experience has been challenged
with the question: “will this make the app more fun to
use?” rather than “will this produce more sophisticated im-
agery?” or “will this enable finer-grained control?” For in-
stance, techniques for altering images were largely chosen
from those which have historically been more for fun than
for practical application, such as liquifying, photo montag-
ing and pixelating. Also, as people enjoy taking ownership
of their work, tools for adding text, stickers and drawings
were implemented, so users can personalise their creations.

In general, users of the app employ the sheet interface
to rapidly produce raw-material images that stand alone as
interesting and aesthetically pleasing artefacts, but can also
become the basis for post-processing design via the edit in-
terface. The sheet has 70× 70 = 4900 empty cells available
for users to tap on, which populates the cell with a randomly
generated 500× 500 pixel image. Double tapping on an im-
age will produce 8 variations of it in neighbouring cells, with
existing images moved out of the way to make room. Drag-
ging and dropping one image onto another likewise produces
10 offspring children in nearby cells. Users can tap an image
to see it re-rendered at 2000 × 2000 pixels, and from there
they can invoke the edit interface to alter the image.

Images are generated via a particle-based approach which
involves mathematical functions guiding the movement and
colour of up to 600 particles over a series of up to 100
time steps. Shapes are rendered at the particle positions,
in the particle’s colour at each time step, and blurring hap-
pens every ten time steps. The functions which initialise
the particles form the init gene in the chromosomal (in
evolutionary art terms) representation of the image. The
gene contains five base functions, which determine the (x,
y) locations and (red, green, blue) colours for each parti-
cle, based on the particle’s ID number. The functions which
guide how the particles change over time form the update
gene, and comprise ones for calculating (x, y, r, g, b) as be-
fore. A third gene in the chromosome, render, consists of
bases such as transparency and size, which determine how
the shapes are rendered at the particle locations, and how a
symmetry transform, such as a kaleidoscope action, further
re-arranges the particles. The final gene in the chromosome,
postprocess, holds information about a series of trans-
formations that the user has imposed on the raw-material im-
age via the edit interface. Prior to the work presented here
(see the section on crossover below), image generation was
controlled by a single chromosome per image, but now the
genome representation can contain multiple chromosomes.

We describe here the latest developments in the Art Done
Quick project. In the next section, we look at the ways in
which users can create new imagery through enhanced edit-
ing tools, how they can collate and curate their creations,
and how we have added a pseudo-bullshit text generator to
provide fun captions for images. Following this, we look
at how the app can automatically cluster large sets of im-
ages, to help users arrange their art on the sheet interface.
We then describe a new crossover operation that solves the
long-standing problem of unsatisfying results arising from
crossing over two images. We end by suggesting some gen-
eral guidelines for casual creation design arising from this
work, and describing some future directions for the project.

Creation, Curation and Captioning
A major milestone was reached in early 2020 when the edit
interface to Art Done Quick was finished. This greatly ex-
panded the range and sophistication of the images that users
can make with the app, and – importantly – also increased
the amount of fun users can potentially have while making
art, as image filtering, collaging and drawing are engaging
and amusing pastimes over and above their use in producing
images. The images in figure 1 were produced using the edit
interface, which comprises the following ten toolsets, all of
which alter the chosen image in real-time.

• Art: where the shape type, size and transparency bases,
the symmetry transform granularity and the number of time
steps and particles from the render gene are altered, with
the raw-material image re-rendered accordingly.
• Effects: where users apply edge detection, blurring, pixel-
lation, dithering, styles and montaging of various types.
• Colour: where users tint and posterize images, add rain-
bow effects and change saturation levels.
• Texture: where users add artistic, grungy, material and
patterned texture overlays.
• Liquify: where users liquify images with holes, glass
balls, twirling, squeezing, bulging and carnival mirrors.
• Light: where users change ambient lighting, add spot-
lights, floodlights and shadows, and make the image glow.
• Montage: where users produce kaleidoscope, spiral, com-
pound eye, ring, decreasing-circle and explosion versions of
their image, optionally overlaid in multiple layers.
• Stickers: where users add stickers to their image, in vari-
ous styles and colours, with optional symmetrical repetition.
• Draw: where users can use simulated paint brushes, pens,
pencils, crayons, highlighters and light pens to draw over or
under their image, producing mandalas if they want to.
• Words: where users can add plain, bordered, patterned,
bubbled, shadowed and glowing texts, in various fonts and
paragraph styles, to their image.

The speed at which images can be generated has improved
greatly in recent developments, with Art Done Quick taking
advantage of multiple cores on iPad and iPhone devices, as

Figure 1: Sample images produced using the edit interface.

described in (Colton et al. 2020a). This means that users can
fill the sheet to capacity (1,000 images on an iPad Pro, 500
images on other devices) in minutes, which has necessitated
tools to enable users to organise and curate the artefacts they
produce. Most important amongst these tools is automated
clustering, as described in the next section. In addition, the
app enables users to drag images around on the sheet to cu-
rate their own collections, to batch-select images for deletion
or to employ a Thanos effect where a random 50% of the im-
ages are deleted. Users can also like images, save images to
their camera roll, and invoke slideshows of liked, randomly
chosen or clustered images.

As depicted in the first (sheet interface) and second (edit
interface) screenshots of figure 2, and described in (Colton
et al. 2020b), we have implemented a secondary AI sys-
tem which controls a virtual hand that acts like (human)
users of Art Done Quick. This explores the space, mutates
chosen images and edits them to produce ones predicted
with high confidence to contain particular objects/scenery by
the ResNet50 machine vision model (Krizhevsky, Sutskever,
and Hinton 2012). Originally intended to illustrate opportu-
nities in going from casual to computational creativity, we
are currently adapting it to act as an auto-pilot to entertain
users while showing them the app’s capabilities.

Another interesting addition to the app has been image
captioning, whereby Art Done Quick produces possibly
amusing and/or inspiring feedback for users in terms of a
caption for images, as portrayed in the third screenshot of
figure 2. As described in (Colton, Berns and Pérez-Ferrer
2020), this also uses ResNet to predict the content of images,
as such false positives act like an interpretation of the ab-
stract imagery. This information, supplemented by a colour
profile of the image, is employed via text templates using In-
ternational Art English (Rule and Levine 2012) to generate
a caption for a user’s image, if they zoom into it on the sheet
interface. When ResNet doesn’t predict any content, the sys-
tem generates pseudo-bullshit (Pennycook et al. 2015) titles
such as: “A Sculptural Interplay” or “Effectively the Con-
cern Manifests”, in a tongue-in-cheek attempt to add weight
to the images (Turpin et al. 2019).

Figure 2: Art Done Quick screenshots (iPhone version).

Clustering
An important technique to help with the management of
large numbers of images on the sheet interface, is the au-
tomatic clustering of images. There are numerous features
of images that could be used for this, e.g., liked/not liked
or based on the construction technique. However, the most
sensible approach was to cluster together images in terms of
how they look, taking into account shape, texture and colour.
To do this, we based the clustering on the features gener-
ated by a headless application of the ResNet neural network
mentioned above for image classification when captioning
images. With these features, initial K-means++ clustering
(Arthur and Vassilvitskii 2007) of images into (at most) 17
clusters appeared very successful, as the clusters have high
internal visual coherence, but were sufficiently different to
other clusters. However, the method didn’t scale well, and
users had to wait nearly six minutes (on an iPad Pro) in the
worst case scenario, namely clustering 1,000 images. Given
this, even a parallel clustering approach would still be far
too slow for practical usage.

Headless applications of ResNet to an image result in a
vector of 2,048 floating point numbers in the range 0 to 1.
We call these numbers ResNet features. On inspecting the
range of each feature, we noticed that many barely varied
at all when applied to 10,000 randomly generated Art Done
Quick images. We recorded the range of each feature over
the 10,000 images, and ordered the features in decreasing
range size. By restricting the features to just those with the
highest ranges, we performed a kind of principal component
extraction, so we can compare clustering times as the num-
ber of features used decreases. As shown in fig. 3, the time
to cluster 1,000 images into 17 clusters reduces from nearly
6 minutes using all 2,048 features to around 2 seconds when
the top 16 (in terms of range size) features were used.

Surprisingly, we found that using only the top 26 features
produced clusterings which seemed just as high quality as
those produced using all 2,048 features. Note that this is
helped by the normalisation of the features to occupy the
full range from 0 to 1, achieved using the feature ranges
recorded over the 10,000 images. Note also that the dis-
tance measure for two features vectors used in the cluster-
ing calculates the average absolute distance between pairs
of values in the same position in the two vectors. We call
this the ResNet distance and use the function d to denote it.
We settled on using 26 features so that each one could be
assigned a different letter of the alphabet, which may help in
rationalising how ResNet analyses images in future work.

The clustering takes at most 2 seconds on an iPad Pro
and 3 seconds on an iPhoneX, and depends on the number
of images to cluster. This delay is hidden from users in two
ways. Firstly, as soon as the user taps the menu button, a new
clustering is generated in a high-priority background thread,
whether it is going to be used or not. As it takes users at
least 1 second after this to navigate the menu and initiate a
clustering, this hides at least half the processing. Secondly,
an animation of the set of images disappearing takes around
1 second and occupies the user’s attention while the cluster-
ing is finalised. Note that the headless application of ResNet
is done at the time of an image’s creation or alteration, not

Figure 3: K-means++ clustering times for 1,000 images, var-
ied by number of ResNet features used.

directly before the clustering, which saves time.
In clusterings of n images, the number of clusters is cho-

sen proportionally to n, as min(17, ceil(n/10)), so at most
17 clusters appear. These are arranged in circles nestling
within a large outer circle, as portrayed in figure 4(a). We
are working on a prototype captioning system which will be
able to lyrically label each cluster. Currently it uses informa-
tion about major colours present in a cluster, and appends an
arbitrary noun taken from an appropriate but generic set, in-
cluding bubbles, jewels, rings, etc. For instance, in figure
4(b), two cluster captions, Japanese laurel gemstones and
snowy mint lights are shown. Future versions will employ
ResNet analyses to assign captions more appropriately, us-
ing shape and texture, as well as colour information.

Figure 4: (a) Screenshot (iPad Pro version) of the clustering
of 750 images. (b) Close up screenshot of captioned clusters.

Crossover
The sheet interface in Art Done Quick affords a simple and
effective way of searching the space of raw-material images
in an evolutionary fashion: (i) double tapping image I pro-
duces 8 images in neighbouring cells, with each image being
a variation of I , and (ii) a long press picks up an image, I ,
enabling it to be dragged and dropped onto another image,
J , producing 10 offspring of I and J in neighbouring cells.
In both cases, existing images in any cell are moved away
before the new ones are added. The mutation of one image
into a set of new images has been long-solved in the sense of
producing satisfying variations of the image. By satisfying,
we mean that each variation look somewhat like the orig-
inal and the other variations, but not too much like them.
To expand upon this: if the variations are too similar to the
original, the user may feel like he/she is not making enough
progress with their choices, but if a variation is too dissimi-
lar, the user may feel as if they have been served up random
images, and have rather wasted their time.

To achieve a satisfying variation of image I , Art Done
Quick mutates the init and update genes in the chromo-
some for I , with a mutation rate chosen randomly as either
1 or 2, leaving the render gene and postprocess gene
untouched. On average, this produces images which are nei-
ther too close nor too far away from I , with mutation rate 2
naturally making images further from I than those with rate
1. A low mutation rate was chosen because we found that al-
tering updatewas quite disruptive, producing images quite
far from the original. For this reason, and as render and
postprocess are available for users to edit directly, no
mutation of these genes is performed when variations are
generated, although this may happen in future work.

While the crossover of two images to produce offspring
resembling them both holds the promise of an entertaining
and interesting addition to Art Done Quick, this functional-
ity has been added only recently, largely because the pro-
cess was quite unsatisfying for users. This was because
the offspring routinely looked either too similar to one of
the parents or completely different to both parents, and this
behaviour seemed invariant to changes in crossover meth-
ods. Moreover, the offspring often looked too similar to each
other, i.e., there wasn’t enough variety in the set produced.
As an example, consider the following images:

The ten images around the outside were produced as off-
spring to the 2 images on the inside. The results are unsatis-
fying, as some of the offspring look too similar to each other,
so there is redundancy, and all the images look too similar
to one parent while not resembling the other enough.

Measuring the Value of Crossover Schemes
A crossover scheme consists of a method for combining the
genetic material of two images into a third image in such a
way that 10 different, satisfying, offspring images are pro-
duced when the genomes are used in the generative process.
Note that image (phenome) based crossover would in theory
be possible, using a range of image compositing techniques
(Porter and Duff 1984). However, this is ruled out, as Art
Done Quick re-generates thumbnail images at higher reso-
lution, which can take longer than a second. If it also had
to re-generate two parent images, and possibly grandparent
and great-grandparent images, this would undoubtedly ruin
the casual experience with long waiting times.

In order to find a good crossover scheme, we stipulated
some requirements as follows:

[R1] A set of offspring images must be generated in one
shot, i.e., the scheme produces exactly 10 images in one go.
[R2] Individual offspring images should be neither too visu-
ally similar nor too to dissimilar to either parent.
[R3] The set of offspring images produced must look rea-
sonably similar and reasonably dissimilar to each other.
[R4] An individual offspring image should not take any
longer to generate than a random raw-material image.
[R5] An offspring image should not occupy more memory
than a random raw-material image.

Requirement R1 ensures that users are not waiting a long
time for the offspring to be produced, as generating 10 off-
spring already takes around 1 second (iPad Pro) and 1.5 sec-
onds (iPhone X). This rules out producing more images than
needed and choosing the best from them. Requirements R2
and R3 are motivated by the discussion above about the re-
sults of crossover being unsatisfying. Requirements R4 and
R5 are to make sure that crossover doesn’t ultimately grind
the app to a halt or overly reduce the number of images al-
lowed on the sheet, as both the fluid/fast nature of user in-
teraction with the app and the ability to have hundreds of
images on-screen are Prime Directives (core aspects) of the
experience users have with Art Done Quick.

In order to test different schemes for crossover with re-
spect to requirements R2 and R3, we devised methods to
capture (a) how good an offspring is with respect to looking
somewhat (but not too much) like its two parents, and (b)
how much a set of offspring look like each other. As a pre-
liminary to this, we determined a sweet spot ResNet distance
by generating 1,000 images randomly with Art Done Quick,
then averaging the ResNet distance between each one and a
mutation of it (produced with mutation rate 1). The average
was 0.08, and given that the mutation method in Art Done
Quick generally gives satisfying variations, this sweet spot
distance captures the notion of a variation image being close
enough to the original, but not too close.

Given a crossover scheme, S, applied to two parents P1

and P2, producing an offspring, C1, we can calculate a
crossover score as follows. Firstly, the ResNet distances
between both parents and the offspring, d1 = d(P1, C1) and
d2 = d(P2, C2), are calculated. Next, the absolute distance

Crossover scheme
Baseline Single Chromosome Multiple Chromosome

Random Copy Init/Update XY/RGB Particles/Render Equal Weight Swampfix
No mutation 0.061 0.119 0.36 0.345 0.361 0.497 0.514

Single mutation - 0.327 0.335 0.333 0.339 0.461 0.467
Double mutation - 0.346 0.323 0.315 0.323 0.412 0.415

Table 1: Comparison of the crossover scores (to 3 d.p.) for 19 different schemes, averaged over 500 tests.

of d1 from the sweet spot 0.08 is calculated, as is the ab-
solute distance of d2 from 0.08. The average of these two
values captures how close a child is to the sweet spot dis-
tance from both its parents. To turn this into a measure with
top value 1 representing a perfect offspring, the overall cal-
culation of crossover(P1, P2, C1) is as follows:

1− 10

(
|d(P1, C1)− 0.08|+ |d(P2, C1)− 0.08|

2

)
Note that if C1 is exactly at the sweet spot ResNet distance
from both P1 and P2, crossover(P1, P2, C1) = 1. Note
also that the multiplication by 10 helps normalise this mea-
sure over the range 0 to 1. As we shall see in an experiment
described below, randomly generated (i.e., with no reference
to either parent) offspring rarely have ResNet distance from
either parent more than 0.18, so the absolute distance from
the sweet spot (0.8) is rarely more than 0.1. Hence, dividing
by 0.1 (or equivalently multiplying by 10) normalises the
average of the two sweet spot distances. While this means
that some crossover scores can be below zero, this is only
for particularly poor offspring, and the normalisation helps
with understanding the value of a scheme.

Given n offspring C = {C1, . . . , Cn} resulting from a
crossover operation, we calculate the sibling score for C as:

1−
(

10
nC2

)n−1∑
i=1

n∑
j=i+1

|d(Ci, Cj)− 0.08|

This averages the distance from the sweet spot of the ResNet
distance for each distinct pair of offspring, and normalises it
as above. Again, values for this tend to be in the range 0 to
1, but can be negative in very bad cases. This measures how
good a set of offspring are with respect to requirement R3
above, i.e., whether there is enough (but not too much) visual
variety in the offspring arising from a crossover operation.

To try and improve the quality of the crossover in Art
Done Quick, we compared various schemes in terms of
the crossover score for individual offspring. Two obvi-
ous baselines to compare against here are (a) the scheme
which outputs a random image as an offspring and (b) the
scheme which outputs a copy of the first parent. Recall-
ing that the genome of an image contains a single chromo-
some consisting of four genes: init, update, render
and postprocess, we concentrated on crossover of raw-
material images, i.e., with no post processing. We imple-
mented and tested the following 3 schemes for the chro-
mosonal crossover of parents P1 and P2 into offspring C1:

• Init/Update: C1 inherits the init and render genes
from P1, but the update gene from P2.
• XY/RGB: C1 inherits the x and y bases from P1 for both
init and update genes, along with the render gene,
but the r, g and b bases from P2.
• Particles/Render: C1 inherits the init and update
genes from P1, but the render gene from P2.

To compare the quality of the output for these schemes,
we generated 500 pairs of images randomly, and produced a
single offspring for each of the random, copy, init/update,
xy/rgb and particles/render schemes. In addition, for the
non-random schemes, we also generated two mutations of
the offspring, one with mutation rate 1 (single) and one with
mutation rate 2 (double). The results are given in table 1.
We see that, as expected due to the normalisation, the worst
case of generating a random offspring produces an average
crossover score near to zero, namely 0.061. The scheme
which takes a copy of P1 as the offspring suffers from the
offspring being not related visually to P2, and from it being
too visually similar to P1, hence neither ResNet distances
will be close to the sweet spot, and it scores only 0.119.
Mutating the copy improves matters, because the offspring
no longer looks as similar to P1 and the scores for mutation
rates 1 and 2 are 0.327 and 0.346 respectively.

We also see that, unfortunately, none of the three
crossover schemes above significantly outperforms the copy
+ mutation schemes, with the highest score being 0.361, for
the particles/render scheme. These results re-affirmed our
experience that crossing over material at genome level into
offspring produces an unsatisfying experience in terms of
the images produced. Further evidence for the disappointing
results are given in the left hand column of figure 6, where
the particles/render scheme has been used for crossover.

Multi-Chromosome Crossover
We achieved a breakthrough with the crossover in Art Done
Quick by adhering to the fun-first methodology described in
(Colton et al. 2020a), based on the specification of casual
creators given in (Compton and Mateas 2015). In one sense,
crossover is redundant in Art Done Quick, because the space
of images can be efficiently and enjoyably searched with just
the random generation and mutation functionalities. How-
ever, given the pleasing nature of dragging one image onto
another and seeing what results, we decided to implement
crossover, but concentrated on how to increase the fun in
this, rather than on how to produce good images. In partic-
ular, we returned to a previously rejected idea for crossover,

which we originally felt would degrade the quality too much,
as the images produced would become rather complicated
and disordered. Taking a more positive view, however, we
determined that this enables users to produce messy images,
and – as any child will tell you – getting messy is fun, fitting
well into the fun-first design approach.

In summary, with the new crossover approach, each off-
spring inherits all the genetic material of both parents, with
each having half the control over the way in which the off-
spring image is generated. Recall that raw-material images
are produced by a set of particles changing position and
colour over time. A natural way of splitting the responsibil-
ity, therefore, is for the chromosome of parent P1 to control
the even-numbered particles, and for parent P2 to control the
odd-numbered particles. In this way, the shapes rendered for
the child consist of half of those of each parent, interleaved.

This new approach required a change in representation,
with genomes now containing multiple chromosomes and
an additional specification of which chromosome controls
which particles. With the new representation, when a child
inherits material, each chromosome from both parents is as-
signed a set of particles to control when the child image is
generated. This can lead to a large number of chromosomes
in certain genomes, so a cap of 32 has been set, and when-
ever the number of chromosomes to be inherited exceeds
this figure, some are randomly chosen to be ignored.

We have found that, as expected, the images produced do
get increasingly disorganised as offspring inherit more and
more chromosomes, and this does feel analogous to getting
messy with traditional art materials. Figure 7 portrays three
family trees with 16, 8 and 8 images, respectively, randomly
generated and crossed over until there is a single descendent
inheriting the genetic material from all of them, with these
images shown in more detail on the right of the figure. On vi-
sual inspection, the offspring largely look like both parents,
but are somewhat different, and this seems much improved
over the previous schemes. The images are indeed more
disorganised than the randomly generated or mutated raw-
material images, but we’ve found that with careful choices
of what to crossover in the app, it is possible to produce aes-
thetically pleasing (albeit subjectively) images, and this has
opened up a wide range of imagery not previously available,
such as those presented in figure 5.

Figure 5: Images made using multi-chromosome crossover.

Figure 6: Left column: crossover with the particles/render
single chromosome method. Right column: crossover with
the swampfix multi-chromosome method. The same parent
images are used on both sides of each row, for comparison.
Average crossover and sibling scores are given.

One issue with the new crossover approach is swamp-
ing, where an offspring has little resemblance to one of its
parents. For instance, under an equal weighting crossover
scheme, if a parent image generated by rendering a small
number of small shapes is crossed with one generated by
rendering a large number of large shapes, the shapes from
the latter will dominate in the offspring rendering, which
produces disappointing results. To cater for this, we imple-
mented a swampfix scheme where the two parent images
are analysed in advance to calculate the proportion of back-
ground to foreground (shape) material. The number of off-
spring particles assigned to the chromosomes of each parent
is calculated with respect to these proportions, so that par-
ents with a higher background proportion are given up to
ten times more particles in the offspring than a parent with
a higher foreground proportion. We’ve found that this often
brings out the characteristics of a swamped parent in the off-
spring, but there are still some issues, which we will address
in future work. Note that swampfix has similarities to prob-
abilistic crossover techniques, such as those described in
(Ortiz-Boyer, Hervas-Martinez, and Garcia-Pedrajas 2005).

To verify our perception that the images produced by the
multi-chromosome crossover are more satisfying than those
produced by the older schemes, we generated 500 pairs
of images randomly and calculated the crossover score for
the equal weighting and swampfix schemes. We also tried
schemes where either a single or both parents were mu-
tated (with mutation rate 1) before they were crossed over,
and likewise recorded the crossover score. Table 1 presents

Figure 7: Family trees generated via the repeated use of multi-chromosome crossover, given with the final image for each tree.
With the exception of the top row image, each image is the offspring of the two directly above and to the left and right of it. On
the right are the final descendant images of the three trees, shown in greater detail.

the results from the experiment, where the same 500 image
pairs were crossed over via 19 different schemes, includ-
ing, as mentioned above, the baseline and older schemes and
mutation-variants thereof. We see that the equal weight and
swampfix schemes produce much higher crossover scores
(of 0.497 and 0.514 respectively) than the older schemes,
the best of which scored only 0.361. This matched our per-
ception that the crossover in Art Done Quick is now quite
satisfying: producing messy, varied, offspring images which
look suitably like their parents. These results also support
the use of the swampfix method, as it scores higher than the
equal weighting version of multi-chromosome crossover.

We also note from table 1 that the mutated versions of the
equal weight and swampfix schemes, while scoring less than
the non-mutated versions, still score fairly high. Recall that
Art Done Quick needs to generate 10 images to fill neigh-
bouring cells on the sheet when a user initiates crossover.
Requirement R3 states that these images should also be suit-
ably different to each other, and the sibling measure de-
scribed above can be used to evaluate this. We experimented
with two swampfix schemes for generating a set of 10 im-
ages: (a) two images produced through crossover, with the
second one using reversed parents, and eight more images
produced this way, but with one parent pre-mutated, and (b)
two images produced through crossover, four with one par-
ent pre-mutated and four with both parents pre-mutated.

To test how these score with respect to the sibling mea-
sure, we generated 500 image pairs randomly, and pro-
duced 10 offspring with these two schemes. For compar-
ison, for the same set of image pairs, we also generated
10 offspring using two particles/render single-chromosome
crossover schemes. In the first scheme, the first two images
were produced with standard crossover, reversing the two

parents for the second one, then 8 images were produced
with these crossovers followed by a mutation with rate 1.
The second scheme was the same, but with four of the eight
mutated images produced using mutation rate 2. The aver-
age sibling scores for the crossover schemes were as follows:

Scheme
Particles/Render Swampfix

Single Mutation 0.308 0.682
Double Mutation 0.033 0.648

We see that swampfix scores quite highly, and more than
double the particles/render crossover scheme. Some sample
crossover operations from the single mutation schemes are
given in figure 6, where we see that the results from swamp-
fix are clearly superior to those from the particles/render
scheme. This is borne out (subjectively) visually, and in the
crossover/sibling scores, which are included in figure 6.

As a final consideration, we return to requirements R4
and R5. Firstly, the time taken to generate an offspring im-
age is roughly the same as with single-chromosome raw-
material generation, as equal numbers of shapes are ren-
dered. However, an unwanted side effect of the multi-
chromosome crossover is that the images are more complex
and hence less amenable to compression. Art Done Quick
generates images for the sheet at a resolution of 500 × 500
pixels, so that there is no loss of fidelity when regenerating
at a scale of 2000 × 2000 pixels. However, to enable it to
show so many images on the sheet, it stores the image in
memory at 180× 180 pixels and applies JPEG compression
with quality 0.7. These values have been derived to produce
images with the lowest memory footprint for an acceptable
loss of image quality, and this approach enables 1,000 im-
ages to be shown on the sheet at one time (on an iPad Pro).

Figure 8: JPEG image size varying by no. of chromosomes.

We noticed that swampfix crossover images had bigger
memory footprints than single-chromosome ones. On inves-
tigation, we found this was because the JPEG compression
was not as effective on the more complex images. To further
investigate, we generated 32 sets of 100 images ranging over
1 to 32 chromosomes, and calculated the number of UInt8
data points that were required to store them in memory, af-
ter scaling and JPEG compression as above. The results are
given in figure 8 as the top (darker) bars in the chart. We
see that there is a steep increase in storage size from 1 to 2
chromosomes, but that the data size does not increase after
five chromosomes. This prompted us to introduce a two-tier
compression scheme, whereby images generated via more
than one chromosome are compressed at 0.6 quality, rather
than 0.7 for single-chromosome images. On visual inspec-
tion, we found that the more complex multi-chromosome
images were able to be compressed with only 0.6 quality
without unacceptable image degradation. Moreover, as can
be seen in the bottom (lighter) bars of the chart in figure 8,
this approach brings down the storage size substantially, to
a level similar to single chromosome images.

Conclusions and Future Work
While we have presented only certain developments in a
particular project, there are some points which might help
casual creator design in general. In particular, the fun-first
design methodology is a powerful driving force which pro-
vides opportunities for implementations and research ques-
tions that would probably not be unearthed if a generative
system was designed, say, for professional art production.
Moreover, this methodology can help in solving problems
that arise because of such perspectives. In casual creator
design, artefact quality has to be tensioned against user en-
joyment, with the latter often taking precedence, e.g., pro-
ducing messy images is fun even though the images may
seem lower quality. Also, while it is possible to use sub-
jective evaluation of difficult notions such as how satisfying
a crossover operator is, there are benefits to formalising a
measure for this, so that different approaches can be objec-
tively compared and contrasted in large-scale experiments.

The image generation process in Art Done Quick was
originally developed as part of The Painting Fool project
(Colton et al. 2015). To compare human and AI creativity,
and to study people’s perceptions thereof, we plan to re-unite

the two projects with The Painting Fool becoming a user of
Art Done Quick, as per (Colton et al. 2020b). Art Done
Quick is being developed as both a research platform and a
casual creator app for commercial release. We are nearing
the end of stage one of the development, which will result in
the first fully-featured version of the app, and we will soon
undertake user testing. We also hope that the app will serve
as a platform for showcasing generative and allied technolo-
gies: it already employs generative visual art techniques,
generative text techniques and machine vision. Moreover,
we have already implemented, and are currently fine-tuning
neural style transfer techniques (Gatys, Ecker and Bethge
2016) to add fun custom-generated textures to images. We
also plan to experiment with vision-informed generative au-
dio design, so user interaction with an image is accompanied
by a subtly different set of sound effects. In this way, we
hope to attract mainstream app designers to turn to compu-
tational creativity research when making casual creators.

Acknowledgements
Many thanks to the anonymous reviewers for their insight-
ful feedback, in particular the notion of a casual creator
“Prime Directive”. Many thanks also to Jon McCormack,
Simon Lucas and Penousal Machado for each insisting that
crossover would be a fun addition to Art Done Quick.

References
Arthur, D., & Vassilvitskii, S. 2007. k-means++: The advantages of
careful seeding. In 18th Ann. ACM-SIAM Symp. Disc. Algorithms.
Colton, S.; Halskov, J.; Ventura, D.; Gouldstone, I.; Cook, M.; and
Perez Férrer, B. 2015. The Painting Fool Sees! New Projects with
the Automated Painter. In Proceedings of ICCC.
Colton, S.; McCormack, J.; Berns, S.; Petrovskaya, E.; and Cook,
M. 2020a. Adapting and enhancing evolutionary art for casual
creation. In Proceedings of the EvoMusArt Conference.
Colton, S.; McCormack, J.; Cook, M.; and Berns, S. 2020b. Cre-
ativity theatre for demonstrable computational creativity. ICCC.
Colton, S.; Berns, S.; and Pérez-Ferrer, B. 2020. First experiments
in the automatic generation of pseudo-profound, pseudo-bullshit
image titles. In Proc. AISB symposium on computational creativity.
Compton, K., and Mateas, M. 2015. Casual creators. Proc. ICCC.
Compton, K. 2019. Casual Creators: AI Supported Creativity for
Casual Users. Ph.D. Diss., University of California, Santa Cruz.
Gatys, L.; Ecker, A.; and Bethge, M. 2016. Image style transfer
using convolutional neural networks. In Proc. CVPR.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
geNet classification with deep convolutional neural networks. In
Advances in neural information processing systems, 1097–1105.
Ortiz-Boyer, D.; Hervas-Martinez; and Garcia-Pedrajas, N. 2005.
CIXL2: A crossover operator for evolutionary algorithms based on
population features. Journal of Artificial Intelligence Research 24.
Pennycook, G.; Cheyne, J.; Barr, N.; Koehler, D.; and Fugelsang, J.
2015. On the reception and detection of pseudo-profound bullshit.
Judgment and Decision Making 10(6).
Porter, T., and Duff, T. 1984. Compositing digital images. Com-
puter Graphics 18(3).
Romero, J., and Machado, P., eds. 2007. The Art of Artificial
Evolution: A Handbook on Evolutionary Art and Music. Springer.
Rule, A., and Levine, D. 2012. Int. Art English. Triple Canopy.
Turpin, M.; Walker, A.; Kara-Yakoubian, M.; Gabert, N.; Fugel-
sang, J.; and Stolz, J. 2019. Bullshit makes the art grow profounder.
Judgment and Decision Making 14(6).

