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Figure 1: Fuzzy linkography allows for the rapid translation of user activity logs from digital creativity support tools (and
other traces of creative activity) into rough graphical summaries, suitable for visual and quantitative inspection by researchers.

Abstract
Creativity researchers sometimes employ linkography—a family
of techniques involving the visualization and analysis of links be-
tween design moves—to make sense of people’s behavior in creative
contexts, but traditional linkography (which involves manual an-
notation of both moves and links) is so time-consuming that it is
mostly applied at very small scales. Meanwhile, digital creativity
support tools (e.g., text-to-image prompting tools) automatically
capture vast numbers of user interaction traces, but these traces are
not yet well understood. We introduce a means of quickly and auto-
matically producing fuzzy linkographs of text-to-image prompting
traces and apply this technique to a large corpus of traces col-
lected from the live deployment of a commercial text-to-image
tool. This allows us to uncover recurring linkographic structures in
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text-to-image prompting interactions; cluster traces to classify user
behaviors into several distinct archetypes; and quickly sift through
thousands of traces to surface structurally interesting episodes of
prompting.
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1 Introduction
Digital creativity support tools (CSTs) [11, 17, 57]—software sys-
tems intended to support users’ creative activity—have become
increasingly prevalent in the last few decades, both in professional
and casual contexts [13]. Recent years have seen especially strong
growth in the adoption of AI-based CSTs—in creative domains as
wide-ranging as writing [36], visual art [7, 45], game design [23],
fashion design [28], worldbuilding [12], and music [40].

Widespread use of digital CSTs permits the automatic capture
of traces of human creative activity at a previously unprecedented
scale, which could be of assistance both in developing theories of
creativity and in evaluating CSTs. Evaluating CSTs is difficult [54]
and has been known to be difficult since the first days of CST re-
search [26]; many evaluation approaches focus on the assessment
of CST users’ subjective experiences of the creative process [8, 35],
while others focus more on the products of CST use [2, 41]. How-
ever, recording of user interaction traces also permits the evaluation
of (co-)creative interaction dynamics, including through the visual-
ization and analysis of user trajectories through design space [1,
14, 16, 32]. These evaluations are process-focused and attempt to
characterize how creative activity evolves over time, allowing them
to directly inform process models of creativity [21, 42]—but their
applicability has so far been limited by the need for domain-specific
quantitative metrics to automatically characterize user-created ar-
tifacts [1, 32] or manual qualitative coding of video recordings of
interaction [14, 16] as prerequisites for use.

Linkographic analyses [18, 19] are similarly visual, temporal, and
process-focused, and their generality has enabled application to a
wide range of creative domains [6, 10, 15, 24]. Linkography hinges
on annotation and visualization of the design moves that make
up an episode of creative activity and the links between related
moves; various statistics can also be computed on the resulting
graphs [19, 30]. Although linkography is sometimes employed to
investigate user interactions with CSTs [55], including AI-based
CSTs [37], it remains a “costly research method, both in terms of
time and resources” [51]; as a result, linkography is still rarely
used to analyze large numbers of creative activity traces captured
by digital CSTs, and some researchers even avoid linkography at
smaller scales due to its “logistical and labour overheads” [3].

To address this limitation, we introduce fuzzy linkography:
a technique for automatically producing (imperfect) linkographs
from sequences of recorded design moves, using a computational
model of semantic similarity as a stand-in for the human anno-
tator of links between design moves. We apply our approach to
text-to-image prompting journeys [44] and highlight recurring
linkographic motifs in these journeys at scale, suggesting that our
approach can be used to discover interesting structure in a variety
of human-AI creative interactions in the future.

2 Linkography: A Brief Primer
Traditional linkography has been explicated in a number of prior
publications (e.g., [19, 25, 30, 37, 51]), so we do not attempt to
describe it fully here. Instead, we first present a brief overview of
key terms and concepts from the linkography literature. Section 3
then updates these concepts for use with automatically constructed
linkographs of continuously weighted rather than binary links.

A linkograph represents a single design episode and consists
of two primary components: a sequence of design moves and a
set of pairwise links between these design moves. Design moves
represent concrete changes made to the design situation, and are
conventionally plotted left to right, with each move represented by
a single dot and uniform spacing between moves (regardless of how
much time elapsed between each pair of moves). Links represent
human-annotated connections between related design moves: if a
later design move can be said to build on an earlier design move, a
link is drawn connecting these two moves. Links are conventionally
drawn below the move sequence.

Several statistics can be computed on linkographs. Individual
moves have backlink and forelink counts that indicate how
many other moves they built on and influenced respectively. Moves
with an especially high link count are called critical moves (CMs);
forelink CMs are sometimes seen as divergent and backlink CMs
are sometimes seen as convergent. A link density index (LDI)
for the linkograph as a whole can be calculated by dividing the
total number of links by the total number of moves; this value
indicates the overall interconnectedness of the moves in the graph.
To quantify the unpredictability of links in a graph (as a rough proxy
for the dynamism of the whole design episode), several measures
of link entropy are also sometimes employed; these calculations
are complicated to describe, and we do not make much use of them
here. See Appendix A for details.

Visually, linkographs are often analyzed in terms of the struc-
tures that appear within them. Goldschmidt [19] describes three key
pattern types that may be seen in linkographs (Figure 2): chunks,
or sequences of interrelated moves that begin with a clear “inciting”
move and are mostly linked back to that incident; webs, or more
tightly interrelated clusters of moves in which each move is linked
to almost every other; and sawtooths, or sequences of moves in
which each move is related only to its immediate predecessor and
successor (potentially suggesting the development of a single idea
that is largely not tied into the rest of the design situation). Linkless
moves are called orphans and indicate ignored digressions.

3 Fuzzy Linkography
Fuzzy linkography is much like traditional linkography, with two
key differences. First, links between moves are automatically in-
ferred by a computational process rather than manually annotated
by a human coder. Second, links are represented as numbers ranging
from zero to one (indicating the strength of semantic association
between a pair of moves) rather than binary on/off values. Con-
tinuous link strength values, and their imperfect correlations with
human assessments of move relatedness, are what give fuzzy linko-
graphs their fuzziness; rather than forcing the machine annotator
to make an authoritative-seeming binary choice about whether
each pair of moves is or is not related, we prefer to pass informa-
tion about move associations that the machine finds ambiguous
or uncertain along to the human user of linkography. For a de-
tailed walkthrough of our visual notation for fuzzy linkographs, see
Figure 9; for an extended discussion of limitations, see Appendix B.

In our implementation of fuzzy linkography, links betweenmoves
are established via an embedding model [53] that translates textual
descriptions of design moves into vectors. For each pair of moves,
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Figure 2: Standard linkographic patterns. Moves 0–3 form aweb; move 4 is an orphan; moves 5–9 form a looser chunk; andmoves
9–12 form a sawtooth. Above each move, purple and orange bars indicate the move’s backlink and forelink count respectively;
moves with an especially high link count in either direction may be deemed critical moves, e.g., the forelink critical move 5.

we use cosine similarity between the embedding vectors represent-
ing each move to determine the strength of the link between these
moves. A numeric similarity threshold 𝑡 is used to discard weak
associations between moves, so that not all moves are judged as
being linked to some extent; raw cosine similarity values exceeding
this threshold are then linearly rescaled from the range [𝑡, 1] to the
range [0, 1] to establish link strengths.

When rendering fuzzy linkographs, we use link color—ranging
from white, for very weak links, to black, for very strong links—to
indicate the strength of each link. “Fuzzy” lighter-colored links
thereby serve to communicate model uncertainty about move as-
sociation; visual “fuzziness” has been found to be an intuitive way
to convey uncertainty [50], which can help to improve the trans-
parency of analyses that rely on machine learning models [4, 5].

Because fuzzy links are represented as numeric strength values
rather than binary on/off states, the quantitative measures calcu-
lated in traditional linkography must be updated to work with
fuzzy linkographs. Forelink and backlink weight values on a fuzzy
linkograph can be calculated simply by summing the strengths of
a move’s forelinks and backlinks respectively. Link density index
values can similarly be computed by summing the strengths of all
links in the graph and dividing this by the total number of moves.
Entropy values can be updated similarly; see Appendix A.

To support widespread application of fuzzy linkography, we
open-source the code we use to construct, visualize, and quantita-
tively analyze linkographs.1 All analyses that we report on in this
paper assess design move similarity via the all-MiniLM-L6-v2
sentence embedding model [53]—an open-source, open-data and
open-weights model that has previously been validated against a
human baseline for assessment of semantic similarity in the con-
text of open-ended ideation [2]. For all analyses reported in this
paper, we use a fixed similarity threshold 𝑡 = 0.35 as the minimum
similarity score for which we infer a link; this value seems to work
well with our chosen embedding model, although in the future, it
may be worth investigating whether the value of 𝑡 can somehow
be chosen in a more principled way.

1https://github.com/mkremins/fuzzy-linkography

4 Analyzing Image Prompting Journeys
We apply fuzzy linkography to the analysis of user image prompt-
ing journeys in a graphical creativity support tool built around a
popular commercial text-to-image diffusion model. Image prompt-
ing practices have previously been analyzed computationally via
topic modeling [46, 56], but we are unaware of any prior large-scale
examination of how individual users’ prompts develop over time.
Our dataset consists of 6,424 interaction traces documenting every
image prompt submitted by every user of the tool during the period
from Dec 11–31, 2024. To exclude data from users who did not make
much use of the tool, we filtered these interaction traces to 1,879
“substantial” traces that contain at least seven image prompts each.
The longest trace in our filtered dataset is 536 moves long, and the
filtered traces overall have a median length of 14.

We consider each interaction trace as a separate design episode
and construct a fuzzy linkograph of the episode, treating individual
textual prompts submitted by the user as design moves. Our (unopti-
mized) Python implementation of link inference, running in Python
3.9.6 on an Apple MacBook Air (M2, 2022), takes 752.944 seconds
to compute link strengths for the filtered set of traces—roughly 0.4
seconds per trace. We then compute several linkographic statistics
on each trace, including link density index; move-level forelink and
backlink weights (which can be used to help identify critical moves);
graph-level forelink, backlink, and horizonlink entropy values; and
an overall link entropy value summing up the other entropies.

4.1 Recurring Linkographic Motifs
By visually inspecting linkographs, noting recurring patterns, and
investigating the specific prompts that are involved in these pat-
terns, we can build a taxonomy of structural motifs that frequently
appear in image prompting traces.

4.1.1 Refinement Webs. The most common motif in our image
prompting linkographs is a “web” of tightly interconnected moves,
signifying a moment of prompt refinement: the user gradually test-
ing smaller and smaller variations on a prompt with relatively fixed
subject matter as they narrow in on the images they want. Links
within this web can often be seen to get gradually stronger from
the beginning to the end of the sequence, as the submitted prompts

https://github.com/mkremins/fuzzy-linkography
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Figure 3: This image prompting linkograph contains three
refinement webs: one at the beginning, one in the middle,
and one at the end. The first web consists of mixed medium-
strength and high-strength links, indicating a greater degree
of prompt variation at an earlier level of conceptualization;
the other twowebsmostly consist of very small permutations
of a relatively fixed prompt.

become steadily more similar to one another—eventually often cul-
minating in several retries of the exact same prompt. In Figure 3,
for example, three refinement webs correspond to a user’s attempts
to visualize an alien civilization; a particular location on that civ-
ilization’s home planet; and members of a specific faction within
that civilization, respectively.

Contrasting somewhat with an earlier finding that a prompting-
based interface usually resulted in relatively small webs compared
to a sketching-based interface [37], we found that large webs of
tightly interconnected moves are fairly common in our text-to-
image linkographs.We suspect this may be because the interface we
studied generates multiple different images in response to a single
prompt submission, perhaps increasing the perceived value to users
of retrying identical or near-identical prompts to stochastically
explore a space of possible results.

4.1.2 Curiosity Zigzags. Another common motif in our image
prompting linkographs is a large-scale “zigzag” structure tempo-
rally interspersed with smaller and largely unrelated chunks or
webs, often corresponding to user alternation between a “central
theme” that they keep returning to and a set of further-flung explo-
rations of different ideas or themes. In Figure 4, for instance, a user
periodically returns to a single central subject—a cyclopean “black
spirit” character—between largely unrelated and wide-ranging ex-
plorations of other themes.

This mirrors a pattern observed in an earlier visualization-based
study of user trajectories through a casual CST’s design space [32],
in which some users visibly alternated between outputs sampled
from a relatively narrow “home base” of outputs and further-flung
explorations that push the boundaries of the CST’s expressive
range [59]. Relative lack of integration of further-flung explorations
may be taken as indicative of boundary-pushing, probing the CST’s
capabilities, or exploration for its own sake (perhaps indicative of
the “curious users of casual creators” phenomenon [47] detected in

Figure 4: This image prompting linkograph demonstrates a
curiosity zigzag, with relatively strong long-range links indi-
cating returns to a central theme and disconnected chunks
between these moves indicating periods of exploration.

even older work); in some cases we believe this pattern may also
indicate user non-development of a coherent goal.

4.1.3 Zigzags Toward Convergence. One recurring motif combi-
nation, which we term the “converging zigzag”, involves a curios-
ity zigzag with gradually growing integration between the “main
theme” and divergent exploration chunks or webs over time (Figure
5). This structure seems to be especially characterized by refine-
ment webs of progressively strengthening links at the “tail end”
of a move sequence, corresponding to integrations of previously
unrelated themes.

Figure 5 shows two such webs. The first web corresponds to
a gradual drawing-together of two recurring subject themes in
this user’s prompts (an insect and a “cute old man” character); the
second corresponds to a drawing-together of this hybrid character
subject with a visual style that the user had previously explored in
other, unrelated images.

Interestingly, the first refinement web occurs just before the user
stops engaging with the CST for a while. The second refinement
web also occurs near two temporal “session breaks”; it crosses
over the first break and terminates with the second, indicating
that the user did not engage further with the CST following their
completion of the second web. This seems to indicate that the user
twice gradually formed a specific goal and progressed toward its
realization, then stepped away from the CST once the goal was
realized.More broadly, across our image prompting data, refinement
webs toward the tail end of a user activity period generally seem
to indicate the user forming and realizing a concrete goal, then
stepping away with the “final” generated images.

4.1.4 Variations in Temporal Structure. We observed clear differ-
ences between users in terms of how their activity changed across
breaks from prompting. The two most obvious temporal patterns
we noticed in linkograph structure are temporally-divided sessions
(Figure 6) and temporally non-divided projects (Figure 7). Sessions
are chunks of related prompting activity that are cleanly bounded
by the user taking a break from prompting on each side; projects
are chunks of related prompting activity that span multiple such
breaks. We were initially surprised to see such clear persistence of
prompting subjects across temporal divides.
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Figure 5: This image prompting linkograph’s “converging zigzag” shape combines a curiosity zigzag with refinement webs:
alternation between a central theme of interest and more divergent explorations persists throughout the episode, but previously
distinct themes are also brought together into a single image concept on two distinct occasions, each time resulting in a
distinctive refinement web.

Figure 6: This image prompting linkograph shows clear se-
mantic divisions between the user’s focal themes during sev-
eral significant temporal “sessions” of prompting. (Vertical
dotted lines between moves indicate the user stepping away
from prompting for at least 30 minutes.) The first and longest
session ends with a clear refinement web.

Figure 7: This image prompting linkograph, on the other
hand, shows a user’s focal themes persisting across multiple
clear temporal divides in prompting activity. The user seems
to be engaged in a long-running “project”.

4.2 Trace Clustering
Computing linkographic statistics on each trace also allows us to
cluster the traces, associating each user’s activity with a distin-
guishable archetype. We first translate each trace into a signature
vector of three statistics: move count, link density index (LDI), and
overall link entropy. We then normalize these values to z-scores
and discard as an outlier any trace whose signature vector includes
a z-score greater than 3; this excludes 59 traces, most of which are
unusually long (consisting of hundreds of moves) and thus prob-
ably in need of partitioning for further analysis. We cluster the
remaining traces’ signature vectors using 𝑘-means clustering—as
employed for design style clustering [1]—with 𝑘 = 5.

The clusters we encounter (Figure 8) can be described as follows:

(1) Medium-long episodes with multiple distinct refinement
webs (331 traces)

(2) Short-medium episodes of mostly disconnected ideas (729
traces)

(3) Short-medium episodes containing a strong refinement web
(273 traces)

(4) Long episodes of very densely interconnected moves (174
traces)

(5) Medium-long zigzaggy episodes with mostly short-range
links but some longer-range links too (313 traces)
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Figure 8: Five clusters of image prompting linkographs, five random examples per cluster.

These clusters, although relatively rough, demonstrate the po-
tential of designer modeling [39] via automatically associating CST
users with distinguishable user archetypes based on their linko-
graphic activity patterns. For instance, members of cluster 1 often
seem to repeatedly seek out an interesting region of image space,
then gradually refine a single prompt until they converge on an
image they like; members of cluster 2 mostly prompt for unrelated
or largely unrelated concepts in batches of one or two prompts at a
time; and members of cluster 4 often seem to have a single major
fascination and mostly prompt for images of this fascination.

Tracking the relative frequency of traces in each category might
help guide design iteration on a deployed CST: for instance, a high
frequency of short and low-connectivity episodes may indicate that
users need additional scaffolding for goal formation. Meanwhile,
cluster-based classification of individual users might allow in-the-
moment adaptation of a CST’s user interface to user-archetypal
needs: for instance, users in cluster 5 may find more value than
others in features involving the revisitation and recombination of
past prompting subjects or themes.

5 Discussion
Potential applications of fuzzy linkography go far beyond those
investigated here. Large-scale application may be used to verify
linkographic hypotheses about what kinds of linkographs indicate
a “good” episode of design or ideation (e.g., [29]), or about how
creativity functions as a process (e.g., [20]). Quantitative metrics on
fuzzy linkographs could also be used for gauging creative momen-
tum [31], to decide when would be a good time for the AI system to

proactively intervene in a co-creative interaction; or to identify past
moves that are as yet “undeveloped”, to focus proactive generation
on unexplored potentialities.

Realtime generation of linkographs opens the possibility of dis-
playing linkographs during a design episode to the participants
as a form of reflective visualization. Reflective visualization has
proven helpful in co-creative contexts in the past [38] and some
CSTs are explicitly designed to promote reflection [33, 43]; the dis-
play of fuzzy linkographs to users may be especially impactful in
this context. However, the interpretability of fuzzy linkographs
by untrained users remains unevaluated; more research may be
necessary to validate broader deployment of fuzzy linkography
among non-researchers.

Like homogenization analysis [2], fuzzy linkography can be ap-
plied to any artifacts that can be embedded in a semantic space—not
just short texts but also images [52, 65], longer texts [60, 63], mu-
sic [22, 27], user interfaces [64], 3Dmodels [34, 61], game states [66],
and likely others in the future. Alternative embedding models may
even allow direct incorporation of design moves by the machine
(e.g., generated images) into fuzzy linkographs. This could enable
the analysis of connectivity patterns between human and machine
moves in a human-AI co-creative context, allowing for identifica-
tion of machine moves that strongly shape the human’s ideation;
cases of the human and machine “talking past one another” rather
than integrating their ideas; and so on.We describe our first attempt
at inter-actor connectivity pattern analysis in fuzzy linkographs
featuring both human and machine moves in Smith et al. [58].
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6 Conclusion
We have introduced a technique for the automatic construction
of fuzzy linkographs from creative activity traces, including those
collected naturally through the course of user interactions with
digital creativity support tools. We have also demonstrated the ap-
plication of this technique to text-to-image prompting interactions,
discovering a variety of interesting linkographic patterns. Although
the resulting linkographs are imperfect, they nevertheless function
well as graphical summaries of design episodes, surfacing high-level
structural patterns in creative activity traces at a glance and serv-
ing as jumping-off points for deeper analysis. In closing, we would
especially like to stress the potential for linkographic abundance
(Figure 10) to enable new applications of linkography: whereas
linkographs have up until this point been relatively scarce, the
availability of low-cost approaches to linkography may greatly
expand the potential audience for linkographic techniques, for in-
stance by allowing CST developers to rapidly create linkographs
for very large numbers of user activity traces as a window into
broad usage trends.
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A Entropy Calculation on Fuzzy Linkographs
In traditional linkographs, forelink and backlink entropy are first
computed on a move-by-move basis, by determining the probability
that a link does or does not exist between a given move𝑀 and any
following (forelinkable) or preceding (backlinkable) move; these
values are then summed across all moves to give a total forelink and
backlink entropy for the whole graph. Horizonlink entropy is a
similar measure, but quantifies the unpredictability of links at each
possible horizon level, i.e., each possible distance between pairs of
moves; horizonlink entropy is first calculated for the set of all move
pairs that are exactly one move apart, then for the set of all move
pairs that are two moves apart, and so on, and these values are
again summed together to give a total horizonlink entropy for the
whole graph. Finally, the three different graph-level entropy values
(forelink, backlink, and horizonlink) can themselves be summed to
give an overall link entropy for the graph as a whole.

Entropy values can be calculated for fuzzy linkographs by treat-
ing the strength of a link between two moves (which already ranges
from 0 to 1) as the probability of a binary link existing between
these same moves. In Kan and Gero’s original formulation of link
entropy, 𝑝 (𝑂𝑁 )—the probability of a possible link existing—is cal-
culated for each row of forelinks, backlinks, and horizonlinks (i.e.,
each “state” 𝑠) as the actual number of links that are present in this
state divided by the maximum number of links 𝑛𝑠 that are possible
in this state. We thus calculate 𝑝 (𝑂𝑁 )𝑠 for the same states as:

𝑝 (𝑂𝑁 )𝑠 =
∑

𝑣∈𝐿𝑠 𝑣

𝑛𝑠
(1)

...where 𝐿𝑠 is the set of strength values 𝑣 of all links that are
present in state 𝑠 . We then follow Kan and Gero’s derivation [30]
of 𝑝 (𝑂𝐹𝐹 )𝑠 and all downstream entropy values.

One consequence of this interpretation is that a fuzzy linkograph
inwhich everymove is connected to every other by ambiguous links
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Figure 9: An example fuzzy linkograph of an open-ended stream-of-consciousness ideation activity. Links between moves are
colored according to their strength (with darker lines indicating stronger links). Move text is displayed directly above the move
markers. This graph features several critical moves: “hello” and “cat” are forelink critical moves that introduce the themes of
greeting and cats respectively; “hello kitty” initially integrates these two themes; and “hello kitty tv show” is a backlink critical
move, fully integrating these themes from the session’s first half with the “video” theme from its second.

may be judged as having greater entropy than a linkograph with
the same LDI, but an equal number of very strong and completely
absent links. This is because the graph saturated with ambiguous
links can be viewed as distributing uncertainty more evenly across
the whole graph. Though we have not seen this cause any practical
problems so far, it strikes us as somewhat counterintuitive. At any
rate, we do not make evaluative use of entropy in the analyses we
present here, because our goal is not to comparatively evaluate
the success of different creative practices or tools but to broadly
characterize creative behaviors observed in different situations;
further refinement of entropy measures on fuzzy linkographs may
be a good topic for future work.

B Limitations and Future Work
A fuzzy linkograph is fuzzy: it does not perfectly match the linko-
graph that a human annotator might produce for the same design
episode. This is partly because even human annotators tend to
disagree to some extent about how to construct linkographs from
the same design moves [25], but also partly because embedding
models are imperfect proxies for human perceptions of design move
relatedness. In particular, transformer-based sentence embedding
models tend to place disproportionate emphasis on certain parts of
speech [48] and may overlook less obvious semantic relationships
between design moves in some cases; for instance, a link was not
inferred between “not much money in the kitty” and “piggy bank”
in Figure 9, even though both involve currency.
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Figure 10: Linkographic abundance: fuzzy linkographs of 100 randomly selected image prompting traces, laid out as thumbnails.
As new activity traces are logged, CST researchers might automatically generate linkographs for these traces and monitor the
overall distribution, or use interesting-looking linkographs as jumping-off points for deeper investigation.

To construct our linkographs, we used all-MiniLM-L6-v2 [53]—
an open, general-purpose embedding model that has previously
been validated against a human baseline for assessment of semantic
similarity in creativity research [2]. However, better performance
could likely be achieved with an embedding model specifically
tuned on data from human-constructed linkographs. It may also
be possible to use a large language model (or some alternative
approach) rather than an embedding model to predict links between
design moves; some automated creativity assessment pipelines
seem to perform better when embeddings are replaced with an
LLM that has been fine-tuned on task-specific data [49], though
this would likely increase cost per linkograph considerably.

Our reformulation of link entropy measures for fuzzy linkogra-
phy is not necessarily the best one possible: in particular, by averag-
ing continuous link strengths and treating the result as a probability
of a binary link either existing or not existing, we arguably conflate
association strength and probability of association in a way that
could sometimes disguise meaningful differences between linko-
graphs. To some extent this is an inherent risk of flattening complex
graph structures down to summary values, and our entropy results
on real data still seem to follow intuitive expectations—but it may
nevertheless be desirable to invent an alternative quantitative proxy
for design episode “dynamism” that yields comparatively higher
values for fuzzy linkographs consisting of mixed weak and strong

links. Similar criticisms have previously been leveled of the conven-
tional approach to calculating link entropy in general; alternative
formulations of entropy proposed in the past [9, 10] may be adapt-
able to fuzzy linkography.

Linkography itself (especially when viewed as a visualization
technique) does not necessarily scale well with trace length past a
certain threshold: a linkograph containing more than a few dozen
moves tends to become visually overwhelming. However, clustering
or summarization of moves may permit condensation of longer
traces to effectively shorter ones for linkographic purposes [62], and
quantitative linkographic metrics may still support trace clustering,
critical move identification, and so on even at larger scales.


	Abstract
	1 Introduction
	2 Linkography: A Brief Primer
	3 Fuzzy Linkography
	4 Analyzing Image Prompting Journeys
	4.1 Recurring Linkographic Motifs
	4.2 Trace Clustering

	5 Discussion
	6 Conclusion
	References
	A Entropy Calculation on Fuzzy Linkographs
	B Limitations and Future Work

