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Abstract. Story sifting techniques, which aim to excavate potentially
compelling microstories from vast chronicles of storyworld events, present
a promising solution to the challenges of interactive emergent narrative.
However, current sifting techniques (which rely on large numbers of hand-
specified story sifting patterns to identify compelling microstories) are
limited by their inability to determine which of many sifting pattern
matches are likely to be the most interesting to a human interactor. We
present a higher-level story sifting heuristic that addresses this problem
by identifying sifting pattern matches that are especially unlikely from
a statistical perspective, and illustrate how this heuristic leads to the
surfacing of more interesting microstories.
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1 Introduction

Story sifting techniques [27, 19] are a family of computational methods (generally
employed as part of a larger generative or interactive storytelling pipeline) that
aim to automatically identify and extract potentially storyful information from
a vast chronicle of narrative events, often generated by a storyworld simulation
containing a large number of autonomous characters. Sifting techniques have
been employed in several contexts, including in podcast generation [27, ch. 12],
computationally engaged improvisational theater [31], social simulation [11, 35],
and mixed-initiative co-creative [21] storytelling [30, 12, 14]. Moreover, sifting
techniques are sometimes used by players of interactive emergent narrative games
in the process of constructing retellings [6] of their play experiences [16], and
sifting has been pitched as a potential solution [28] to several key challenges of
emergent narrative [22, 15, 36] broadly construed.

Most current approaches to story sifting make use of many hand-authored
story sifting patterns to identify potentially compelling nuggets of narrative con-
tent. A sifter that has more of these patterns at its disposal is able to recognize
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a wider variety of potentially interesting emergent story patterns, and conse-
quently is better able to respond to the unexpected outcomes of storyworld
simulation, so past research in story sifting has aimed to make these patterns
easy to author in large numbers.

However, once a sifter is equipped with a wide range of sifting patterns, a
new problem emerges: the difficulty of determining, from among many matches
against many sifting patterns, which matches are the most worthwhile to surface
to the player. Since even a single pattern may yield hundreds or thousands of
matches when executed against a chronicle of thousands of simulation events,
the mere knowledge that a sifting pattern found a match isn’t necessarily enough
to determine whether this match is likely to be particularly interesting from a
human’s perspective.

Beyond low-level sifting patterns, past work on story sifting [27, p. 237] has
also raised the idea of higher-level sifting heuristics that encode a sense of what
makes for narratively interesting material in a more generic way. If we had such
a heuristic, it might prove useful in selecting the most interesting sifting pattern
matches—but the specifics of how to implement sifting heuristics have not yet
been seriously investigated.

In this paper, we present a candidate sifting heuristic that uses statistical
methods to identify which of many sifting pattern matches are most likely to
be interesting from a human’s perspective. We call this heuristic the Select
the Unexpected heuristic, or simply StU. Intuitively, this heuristic is based
on the narrative quality of unexpectedness: sequences of events are more likely
to be perceived as storyful, and thus to be considered tellable as stories [1],
if they somehow deviate from expectations. We operationalize unexpectedness
by searching for matches against a sifting pattern that are particularly unusual
relative to other matches against the same sifting pattern. We evaluate our
approach by comparing our heuristic’s judgments of microstory interestingness
to those of human raters (with favorable results); by highlighting several cherry-
picked examples of microstories that our heuristic surfaced within the output of
a bare-bones test simulation; and by illustrating how our heuristic can obtain
results similar to a canonically successful example of story sifting (Ryan’s arson-
revenge example) with more generic sifting patterns than those employed in
Ryan’s work. Both data and code for this paper is publicly available online.4

2 Background

2.1 Story Sifting

Story sifting as an approach was originally proposed by Ryan under the name
“story recognition” [28] and later defined further under the updated name “story
sifting” [27]. Ryan’s dissertation work also introduced Sheldon [27, ch. 12], a
simple autonomous story sifter that makes use of sifting patterns specified as
4 https://github.com/mkremins/statistical-sifting
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blocks of code in the Python programming language. Prior to Ryan, sifting-
like techniques were employed in a few different contexts: Cardona-Rivera and
Young’s work on symbolic plan recognition in narrative domains [3] bears some
substantial similarities to pattern-based story sifting, as does Osborn et al.’s work
on applying regular expressions to sequences of game states in a social simulation
game [25] and Elson’s work on using logical patterns to conduct analogy search
between plot structures [7]. “Story trees” in The Sims 2 were also used in a
sifting-like fashion [2, 23]. However, it is Ryan’s work that gave the “curationist
emergent narrative” tradition a distinct name and identity for the first time.

Since Ryan’s early work, a number of other approaches to authoring story
sifting patterns have been introduced [19], including declarative specification of
sifting patterns using domain-specific logic programming languages like Felt [13]
and Winnow [10], as well as example-based [18] and visual [8] tools to assist
users in authoring these declarative sifting patterns.

Relatively little work on story sifting has been done outside the pattern-based
paradigm to date. One recent exception to this rule—Arc Sift [20]—performs
story sifting via dynamic time warping, aiming to find stories that match spe-
cific character fortune arcs drawn by a user without the use of sifting patterns.
However, the dominant approach to story sifting still relies heavily on sifting
patterns to locate sites of potential narrative interest.

2.2 Toward Sifting Heuristics

The sifting patterns that are used in existing story sifters tend to be fairly
low-level, concrete specifications of emergent story patterns that make for good
narrative material. Patterns at this level, however, do not necessarily capture
more generic notions of what makes for a good story, for instance those that
have been set out in cognitive narratology research. This raises the question of
how a more generic sense of narrativity [29] or tellability [1] could be encoded into
the machine, such that sifters can leverage this information to better understand
the player-perceived story—for instance by using tellability to gauge which of
many viable sifting pattern matches are most likely to be important to the
player-perceived narrative. In the story sifting literature, encodings of abstract
narrativity or tellability are called sifting heuristics [27, p. 237].

Sifting heuristics may attempt to operationalize constructs from cognitive
narratology, including story interestingness as defined by Schank [33] and event
salience [9] (a proxy for story memorability) as operationalized in Indexter [4].
An operationalization of surprise—which is often treated as a key component of
interestingness, and which may be detectable via statistical approaches such as
anomaly detection—could also prove useful in sifting heuristics.

Sifting heuristics might also be learned from data on how users interact with
existing interactive story sifters, for instance the Bad News “wizard console” or
the Legends Viewer interface for exploring Dwarf Fortress worlds. Samuel et al.
have recently conducted an analysis of interaction trace data with the Bad News
wizard console [32], revealing that certain sets of wizard console commands are
often executed together. Recurring patterns of interaction with these lower-level
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sifting interfaces could potentially be abstracted into high-level sifting heuristics,
since a human user’s sense of what information is needed to identify a compelling
narrative throughline for a whole Bad News play session (for instance) could be
expected to serve as a good proxy for the information that a computational
system would need to make similar determinations.

The sifting heuristic we present in this paper is based on (a relatively naïve
interpretation of) a cognitive-narratological construct—namely that of surprise.
However, we hope that future work will explore other approaches to sifting
heuristic development as well.

3 Pattern-Based Story Sifting

Our story sifting heuristic (which we discuss further in Section 4) extends the
pattern-based approach to story sifting, particularly the flavor of this approach
in which patterns are specified as logic programs (as in the Felt and Winnow
story sifting languages). Before discussing the details of our heuristic, we will
first briefly recap how pattern-based sifting works in Felt.

Here is an example Felt sifting pattern:

(eventSequence ?harm ?scheme ?arson)
[?harm tag harm] [?harm actor ?revengeTarget] [?harm target ?arsonist]
[?scheme eventType hatchRevengeScheme] [?scheme actor ?arsonist]
[?scheme target ?revengeTarget]
[?arson eventType setFire] [?arson actor ?arsonist]
[?arson target ?revengeTarget] [?arson victim ?victim]

This pattern, based on the arson-revenge pattern discussed by Ryan [27,
p. 671–674] and Kreminski et al. [10, 19], aims to match an ordered sequence of
three events—?harm, ?scheme, and ?arson—with arbitrarily many other events
interspersed between. The first of these events, ?harm, represents a character
(the eventual ?revengeTarget) doing something that harms another character
(the eventual ?arsonist). The second event, ?scheme, represents the ?arsonist
resolving to avenge the harm in some way. Finally, the third event, ?arson, rep-
resents the ?arsonist getting their revenge by burning down a building owned
by the ?revengeTarget—potentially harming a third character, the ?victim,
in the process.

Identifiers in the pattern that begin with the question mark character (such
as ?scheme and ?arsonist) represent logic variables: “roles” that are bound
to concrete values, such as character or event IDs, in the process of pattern
execution. A match against this sifting pattern consists of a set of bindings for
all of these logic variables that satisfies the pattern’s constraints.

Constraints, meanwhile, are specified in terms of [square-bracketed] and
(parenthesized) expressions. An expression of the form [e a v] represents an
assertion that the entity with ID e has an attribute named a whose value is
v; generally speaking, e is always a logic variable, while a is usually a literal
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string (the name of a particular attribute) and v can be a literal string or an-
other logic variable depending on context. An expression of the form (ruleName
args...), on the other hand, represents an assertion that the inference rule
named ruleName holds true for the given args. Inference rules are Datalog
rules [5], written in the DataScript [26] dialect of Datalog. The eventSequence
rule in our example arson-revenge sifting pattern is one such rule; it holds true
if each of its arguments is the ID of an event entity and the events these IDs
point to are chronologically ordered from left to right.

Executing a sifting pattern returns a list of all valid matches against this
pattern that are possible based on the events that have transpired in the sto-
ryworld so far. Depending on the pattern and on how long the storyworld has
been allowed to evolve, a single Felt sifting pattern may return anywhere be-
tween a handful of matches and tens of thousands. (Even larger numbers of
matches against a single pattern are theoretically possible, but because Felt
runs in browser JavaScript, it generally bogs down when the number of candi-
date matches is any larger than this.) It is at this point that the need to select
the most interesting matches becomes evident—and it is at this point that our
sifting heuristic is deployed.

4 Our Heuristic: Prefer Matches with Unusual Properties

Once we have identified many matches against a single sifting pattern, how do
we determine which matches are most unusual? Our approach is based on the
generation and comparison of a property signature [24, 18] for each match: a set
of simple statements about the plot events captured in this match and how they
are related to one another.

In evaluating a single match against a particular sifting pattern, we first
generate a list of properties that hold true for this match. For each of the
match’s properties, we then determine how frequently this property appears
in all matches against the same sifting pattern—i.e., the property’s likelihood of
appearing in a match against this sifting pattern. We then average together the
likelihood scores of each of a match’s properties to determine an overall likeli-
hood score for the match as a whole. A pseudocode definition of our heuristic is
given in Algorithm 1.

We employ several distinct property generation strategies to discover poten-
tially interesting details about each sifting pattern match. These property gener-
ation strategies are based on, but not limited to, those used in Synthesifter [18].
Specifically, for each match, we generate the following properties:

– One event type property indicating the event type of each event in the
matched event sequence. An event type is a string that uniquely identifies a
particular type of action that a character in the simulation can perform.

– Zero or more event tag properties indicating the tags of each event in the
matched event sequence. A tag is a string that indicates an event has a par-
ticular characteristic; for instance, events that relate to an (actual or poten-
tial) romantic relationship between two characters may be tagged romantic,
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Input: pattern: a story sifting pattern
Output: matches: a list of pattern matches with associated likelihood scores
matches ← GetAllMatches(pattern);
propertyCounts ← {};
foreach match ∈ matches do

match.properties ← GenerateProperties(match);
foreach property ∈ match.properties do

prevCount ← propertyCounts[property] or 0;
propertyCounts[property] ← prevCount + 1;

end
end
propertyLikelihoods ← {};
foreach property ∈ Keys(propertyCounts) do

propertyLikelihoods[property] ← propertyCounts[property] / |matches|;
end
foreach match ∈ matches do

match.likelihood ← Average(Map(λ.prop → propertyLikelihoods[prop],
match.properties));

end
return matches

Algorithm 1: The StU story sifting heuristic. The likelihood score of a
match against a given sifting pattern is the average likelihood score of that
match’s properties in the context of that pattern. Matches with lower likeli-
hood scores are more surprising and therefore preferable to surface.

while events that represent a character attempting to take an action but fail-
ing may be tagged failure.

– One character trait property for each matched character that has a no-
table trait. In the simple test simulation that we used for our evaluation,
these traits include friendly, unfriendly, romantic, and secretlyFamous
(with the last of these being especially uncommon).

– One character relationship property for each pair of matched charac-
ters that are connected by a particular kind of dyadic relationship. In our
test simulation, these relationships include viewsAsFriend, viewsAsEnemy,
onesidedFriendship, onesidedEnmity, mutualFriendship, mutualEnmity,
attractedTo, onesidedAttraction, mutualAttraction, and childhoodFriends.
(As with character traits, the last of these is especially uncommon.) Each of
these relationships is defined by a DataScript inference rule, so new forms
of potentially interesting dyadic character relationships can be added to the
property generation process relatively easily: for instance, the mutual and
onesided relationships are defined in terms of other, more basic unidirec-
tional relationships.

– One same-character property for each pair of matched characters that
are actually the same character. For instance, if a sifting pattern contains
two distinct character roles for the ?arsonist and ?victim characters in
an arson-revenge sequence, these roles are unlikely to be played by the
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same character—but the possibility of both roles being played by the same
character is not completely excluded (for instance, if the arsonist accidentally
dies in the fire that they set). Consequently, if the same character ends up
cast in both of these roles within a particular sifting pattern match, we
generate a same-character property to mark this occurrence.

For instance, suppose we are generating properties for the following sequence
of events—a match against a romanticFailureThenSuccess sifting pattern, in
which a single protagonist character experiences two romantic rejections followed
by a romantic success. Here’s the sifting pattern:

(eventSequence ?e1 ?e2 ?e3)
[?e1 actor ?protag] [?e1 tag failure] [?e1 tag romantic]
[?e2 actor ?protag] [?e2 tag failure] [?e2 tag romantic]
[?e3 actor ?protag] [?e3 tag success] [?e3 tag romantic]
[?e1 target ?c1] [?e2 target ?c2] [?e3 target ?c3]

And here’s an example match, in which the character Alex is bound to the
?protag logic variable, while Brian and Cara take on the roles of the other
characters (?c1 through ?c3):

1. Alex flirts with Brian and is rejected
2. Alex flirts with Cara and is rejected
3. Alex successfully asks Brian out on a date

As part of property generation, beyond examining the events themselves, we
also query for the traits and relationships of the characters involved. This query
tells us that the character Cara has the friendly trait, and the character Brian
has the viewsAsFriend relationship toward Cara. This event sequence therefore
yields the following set of properties:

– eventHasType_e1_flirtWith_rejected
– eventHasType_e2_flirtWith_rejected
– eventHasType_e3_askOut_accepted
– eventHasTag_e1_romantic
– eventHasTag_e1_failure
– eventHasTag_e2_romantic
– eventHasTag_e2_failure
– eventHasTag_e3_romantic
– eventHasTag_e3_success
– eventHasTag_e3_major
– charHasTrait_c2_friendly
– charsAreRelated_viewsAsFriend_c1_c2
– charsAreRelated_viewsAsFriend_c3_c2
– sameChar_c1_c3
– sameChar_c3_c1
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This list of properties aims to capture the potentially interesting features of
this pattern match—a set of assertions that are true about this match, and that
might or might not be true for other matches against the same pattern. Some
properties might hold for all or almost all matches against a particular pattern:
for instance, by definition, every event included in a romanticFailureThenSuccess
pattern match will always have the romantic tag, so the eventHasTag_e1_romantic
property will hold for every match against this pattern. However, some properties
are likely to be less common: for instance, since the romanticFailureThenSuccess
sifting pattern doesn’t specify that the first and last targets of attempted ro-
mantic interaction (?c1 and ?c3 respectively) need to be the same character, the
sameChar_c1_c3 property is likely to occur fairly infrequently. Thus we return to
the key idea behind our heuristic: we can define the likelihood of a partic-
ular sifting pattern match in terms of the context-specific likelihoods
of its various properties.

5 Evaluation

We evaluate our approach in three ways. First, to determine whether our heuris-
tic’s judgments of story interestingness agree with those of human raters, we
apply our heuristic to a small test simulation and five Felt sifting patterns de-
signed to sift the output of this simulation. Using data drawn from a single
run of this simulation and sifting process, raters are asked to perform blind
comparisons between heuristic-preferred and randomly selected matches against
these sifting patterns. Second, we highlight several cherry-picked examples of
microstories surfaced by our heuristic (as applied to our test simulation and test
sifting patterns) that we find particularly compelling. Third, we briefly illustrate
how our heuristic is capable of obtaining results similar to Ryan’s arson-revenge
example—a canonical example of story sifting success—even with more generic
sifting patterns than those Ryan employed.

5.1 Comparison with Random Baseline

In order to compare heuristic-preferred with randomly selected sifting pattern
matches, we first ran our test simulation once to generate a chronicle of 1000
events. Our test simulation contains 24 possible action types for characters to
perform and a cast of 20 characters. At the start of a simulation run, charac-
ters are randomly initialized with traits and dyadic relationships. Then, on each
timestep, we randomly select a single actor character, a single target character,
and a single type of action to perform between them. Actions are chosen proba-
bilistically depending on the traits and relationships of the characters involved;
for instance, a character who is attractedTo another character is more likely to
perform an action that is tagged romantic toward them.

After running the simulation, we then executed five Felt sifting patterns
against the resulting chronicle to collect all possible matches for each pattern.
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Once the matches were collected, we applied our heuristic to the complete set of
matches for each pattern and calculated a likelihood score for each match.

The five sifting patterns with which we tested include:

– romanticFailureThenSuccess (previously introduced in Section 4): A char-
acter experiences two romantic rejections followed by a romantic success.

– establishFriendship: A character performs a friendly gesture toward an-
other character, and this friendliness is subsequently reciprocated.

– revengeAlliance: A character performs actions that harm two other char-
acters; these two harmed characters have a friendly interaction; and one
of the harmed characters subsequently takes revenge on the character who
harmed them.

– statusReversal: A character performs two low-status actions toward a sec-
ond character, followed by a high-status action toward that same character.

– cantCatchABreak: A character is harmed three times in succession by other
characters’ actions, with the last of these harms being major.

Based on a single run of the simulation and sifter, we collected 15 pairs of
microstories: three pairs of matches for each of our five sifting patterns. Each pair
of matches contained one of the three top-scoring matches for a particular sifting
pattern according to our heuristic (i.e., one of the three least likely matches for
the pattern in question) and one randomly selected match for the same pattern.
We chose to compare heuristic-selected matches against random matches because
random selection of matches to surface is part of current practice in story sifting
(and thus a realistic baseline for comparison), and because random selection is
essentially a “zero knowledge” heuristic for match selection (under which the
system makes no attempt to discern which matches are most interesting).

We then presented these pairs of matches to three human raters, with each
rater reviewing all 15 pairs. For each pair of matches, raters were asked to in-
dicate which match was more interesting, resulting in a total of 45 pairwise
interestingness judgments across all raters. To minimize ordering effects, pairs
were presented in a randomized order from one rater to the next, and the order
of matches within the pair (i.e., whether the heuristic-preferred or randomly se-
lected match was presented first) was also randomized. Raters therefore had no
way of knowing which matches were selected by the heuristic and which were
selected randomly.

Altogether, across our three raters, we found that raters agreed with our
heuristic’s judgments of story interestingness in 38 of 45 cases. In other words,
raters selected the heuristic-preferred match as the more interesting microstory
84.44% of the time. A breakdown of heuristic/rater agreement across each of the
five sifting patterns is given in Table 1.

It is worth noting that this evaluation context represents something like a
worst-case scenario for the presentation of sifted microstories. Unlike in interac-
tive emergent narrative gameplay, raters were not given access to the underlying
test simulation or any broader context for the microstories we presented, so their
knowledge of what kinds of events are particularly common or uncommon in the
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Sifting pattern # Agreements % Agreement
establishFriendship 7/9 77.78%
romanticFailureThenSuccess 7/9 77.78%
revengeAlliance 7/9 77.78%
statusReversal 8/9 88.89%
cantCatchABreak 9/9 100.00%
Overall 38/45 84.44%

Table 1. Heuristic/rater agreement on microstory interestingness, both per sifting
pattern and overall. The “# Agreements” column shows the total number of cases
in which a human rater agreed with the heuristic’s pairwise interestingness judgment
between two microstories, while the “% Agreement” column shows how often a rater’s
assessment agreed with the heuristic’s as a percentage of total cases.

simulation was limited. Additionally, microstories were presented to the raters
in a bare-bones text format that required significant mental work to interpret
as a story—see Figure 1 for an example. Finally, two of our sifting patterns
(establishFriendship and revengeAlliance) returned very small numbers of
matches in our test run of the simulation (13 and 12 matches respectively). This
limited the amount of training data to which our heuristic had access in attempt-
ing to determine per-property likelihoods for matches against these patterns, and
limited the extent to which we might expect noticeable differentiation between
heuristic-preferred and randomly selected matches for these patterns (since the
heuristic only had around a dozen matches to select from in each case). Never-
theless, agreement between human-rated and heuristic-based judgments of story
interestingness remained high. Consequently, we expect that agreement between
our heuristic’s judgment of story interestingness and that of human interactors
will at worst remain the same and at best substantially increase in contexts more
similar to typical interactive emergent narrative gameplay.

Which romanticFailureThenSuccess story is more interesting?

Story 1: Isla flirtWith_rejected Quinn. Isla flirtWith_rejected Sarah. Isla
flirtWith_accepted Mira. (Isla is romantic. Quinn is unfriendly. Mira is
romantic. Mira viewsAsEnemy Sarah. Mira attractedTo Sarah.)

Story 2: Mira askOut_rejected Peng. Mira askOut_rejected Peng. Mira
flirtWith_accepted Riva. (Mira is romantic. Peng is unfriendly. Riva is
unfriendly. Riva viewsAsFriend Peng. Riva attractedTo Peng.)

Fig. 1. Example comparison between a pair of microstories, as presented to raters.
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5.2 Cherry-Picked Successes

During testing, we found several of the emergent microstories surfaced by our
heuristic to be particularly compelling. One of these was a match against the
romanticFailureThenSuccess pattern, discovered during early testing when
only this pattern was active. The character Oswald asked the character Lexi out
on a date and was turned down. Oswald then flirted with another character,
Victor, and was turned down again. But when Oswald asked Lexi out a second
time, Lexi accepted. Intriguingly, though neither Lexi nor Victor felt much of
anything toward Oswald, they both viewed one another as enemies and were
attracted to one another—suggesting that Lexi’s acceptance of Oswald’s second
invitation was motivated more by complex feelings of jealousy toward Victor
than by any actual interest in Oswald.

Another exemplary microstory was a match against the statusReversal
pattern, surfaced as the top heuristic-preferred match on the very first run of
the simulation with this sifting pattern enabled. The character Quinn first felt
condescended to by the character Isla, but shortly thereafter deferred to Isla’s
expertise on a career-related topic. Much later, presumably after Quinn had risen
to a much greater level of prominence within Isla’s social circle, Quinn ended
up shunning Isla from this circle. Tragically, the initially higher-status Isla had
viewed the initially lower-status Quinn as both a friend and a potential love
interest—but Quinn did not reciprocate these feelings, and Isla’s attempts to
support Quinn ultimately brought Isla nothing but suffering.

More generally, we found examples of all of the following unlikely occurrences
in matches that were surfaced by our heuristic:

– Globally uncommon event types. For instance, characters in our test
simulation rarely physically attack one another even when there exists con-
flict between them, so microstories involving physical violence stand out as
unusual. (In simulations where physical violence is the predominant means
of conflict resolution, microstories involving peaceful resolutions to conflict
might be highlighted instead.)

– Pattern-specific uncommon event types. For instance, even globally
common event types (such as visiting a graveyard) may occur very rarely in
particular narrative contexts (such as a romance microstory), so a romance
microstory in which the initial meet-cute took place in a graveyard stands
out as unusual.

– Characters more related than necessary. For instance, romantic rivals
do not necessarily have to be related in any other way, so a microstory
involving two romantic rivals who were also childhood friends stands out as
unusual.

– Characters related in unexpected or apparently contradictory ways.
For instance, romantic affection is generally correlated with platonic affec-
tion, so a microstory in which two characters who view one another as ene-
mies become involved in a romantic relationship stands out as unusual.

– Characters acting against type. For instance, characters with the friendly
trait in our test simulation tend to behave in consistently friendly ways, so



12 M. Kreminski et al.

a microstory in which a friendly character performs several mean actions
stands out as unusual.

Unexpected occurrences like these are often featured in player-constructed
retellings of their gameplay experiences in interactive emergent narrative games,
and they may serve as especially fertile jumping-off points for extrapolative nar-
rativization [17]: the process by which players who are writing retellings of their
gameplay experiences invent additional details (often involving character mo-
tives) that are consistent with simulation events, but go beyond the level of de-
tail that the simulation actually models. For instance, in the cherry-picked story
of Oswald, Lexi and Victor, the character motivations implied by the characters’
actions are much more complicated than the motivations actually modeled in
the simulation engine—but the story still “works” on an intuitive level because
of the reader’s capacity for extrapolation.

5.3 Generalizing Arson-Revenge

Perhaps the strongest argument for our heuristic is that it could successfully
identify the canonical arson-revenge microstory from Ryan’s dissertation [27, p.
637–638] as especially notable, even if it was only given a more generic sifting
pattern for revenge stories that do not necessarily involve arson. Ryan’s arson-
revenge microstory involves a farmhand (Roy Champ) who is bullied by the
farm’s owner (Julius Eckert) and decides to enact a revenge scheme against him,
specifically by burning down his farmhouse. However, in the process, Champ
himself is trapped in the burning building and ends up dying, while Eckert (who
was away for the weekend) is physically unharmed. Ryan discovered this instance
using a sifting pattern that was specifically tailored to search for stories of arson
being used as a means of revenge.

Using our heuristic, this microstory would stand out as unusual among all
kinds of sifted revenge stories for two key reasons. First, because arson is a
rare event both globally (since characters rarely commit arson in general) and
contextually (since most revenge schemes are enacted by means other than ar-
son), the mere presence of a set-fire action in a match against a generic re-
venge story sifting pattern would tend to make this match less likely from a
statistical perspective. Second, since the avenger and victim roles in this mi-
crostory are played by the same character (even though a revenge sequence
does not necessarily have any victims, and victims would usually be assumed
to be characters other than the avenger), this microstory would stand out as
an exemplary case of the involved characters being more related than necessary.
In summary, our heuristic would generate two statistically unusual properties
for this match—eventHasType_e3_set-fire and sameChar_avenger_victim—
then detect these properties (and particularly their simultaneous presence in a
single match) as statistically unusual. Consequently, our heuristic would lead to
the discovery and surfacing of this match—even in the absence of a sifting pat-
tern specific to arson-revenge stories—as long as a more generic sifting pattern
for revenge stories of any kind was available.
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6 Discussion

6.1 Considerations for Sifting Heuristic Design

Our use of pattern-based sifting as a foundation atop which to implement higher-
level sifting heuristics is essentially a solution to a narrative-specific form of
the frame problem [34]: the difficulty of determining what context is relevant
when trying to determine whether a given event is worth mentioning in a story.
Interestingly, though past work on story sifting has generally emphasized the
importance of giving sifters access to many highly concrete story sifting pat-
terns [19], we found that the presence of our heuristic substantially improves the
leverage of more abstract sifting patterns, since more generic patterns tend to
match more microstories within the same chronicle of events, giving statistical
heuristics more training data on which to base their judgments of microstory
interestingness and more options to choose between when selecting microstories
to surface. This result suggests that, in two-layer approaches to sifting like ours
(which use both patterns and heuristics), the role of patterns is different than
in single-layer approaches to sifting (which make use of patterns alone): instead
of attempting to capture only tellable sequences of events, patterns should be
written to capture event sequences that have narrative structure without regard
to tellability, and tellability judgments should be left to heuristics.

The heuristic we describe here offers a form of built-in explainability as to
why a particular sifting pattern match has been surfaced over others. Since not
just matches themselves but also the individual properties of each match are
given their own likelihood scores, it is possible to sort all of a given match’s
properties by their likelihood and directly present the specific properties that
are judged as especially unlikely in order to explain why this match was judged
as unusual or worth surfacing. Depending on the context in which story sifting is
deployed, this form of explanation may help to mitigate the Tale-Spin effect [37]
(in which human interactors fail to appreciate the complexity of an AI system
due to the opacity of its outputs) in interactive emergent narrative games that
make use of story sifting. Alternatively, if sifting is deployed in the context of
mixed-initiative co-creative storytelling (as it sometimes has been in the past),
explanation generation may help to enrich co-creative interaction in the ways
envisioned by Zhu et al. [38] in their exploration of explainable AI for designers.

6.2 Limitations and Future Work

One limitation of our heuristic is its poor handling of correlated unlikelihoods.
For instance, if there exists a rare kickPuppy action that most characters never
perform, and a character with a rare villain trait that causes them to per-
form the kickPuppy action whenever possible, the overall prevalence of sifting
pattern matches containing kickPuppy actions will be very low overall—as will
the overall prevalence of matches involving a villain character. But when a
match contains a villain character who performs a kickPuppy action, both
the presence of the individually unlikely character trait and the individually
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unlikely event type will cause the heuristic to rate this match as very unlikely
overall—even though this particular rare action is performed very frequently
by characters with this particular rare trait. Since our heuristic only considers
whether a particular property of a sifting pattern match is common or uncommon
among all other matches against the same pattern, it has no way of determining
that puppy-kicking is to be expected from villains, and consequently to treat a
match that contains both of these correlated unlikelihoods as a relatively likely
microstory overall. This remains an issue for future work.

In the future, we also expect that it will be valuable to explore additional
property generation strategies beyond those presented here. One set of poten-
tially valuable property generation strategies, which we made no attempt to
implement in the initial version of our heuristic, involves pairwise relationships
between events themselves. For instance, in a simulation that performs what
Ryan terms “causal bookkeeping” [27, p. 162–163], causal relationships between
events captured in the same sifting pattern match could be surfaced as proper-
ties. Similarly, the amount of time elapsed between events in a matched event
sequence could be used for property generation as well: narrative interest can be
derived from the fact that a pair of matched events occurred very close together,
or very far apart, in time.

Finally, we note that because the comparison-against-random-baseline por-
tion of our evaluation made use of only three human raters, the results of this
comparison remain somewhat tentative: although all raters agreed with our
heuristic’s interestingness judgments in a clear majority of cases, it remains pos-
sible that the raters were all outliers in this regard. Future studies could provide
stronger evidence for the success of our heuristic by applying a similar study
design to a substantially larger number of raters.

7 Conclusion

We present the StU sifting heuristic, which is (to the best of our knowledge) the
first high-level story sifting heuristic that can be used to automatically evaluate
microstory interestingness in a story sifting context. Agreement between our
heuristic’s judgments of interestingness and those of human raters is high, and
our approach can easily be generalized to other simulation engines besides the
simple one with which we conducted our initial testing. We believe that the
two-layer approach to story sifting presented here (in which sifting patterns
are used in conjunction with sifting heuristics) represents a substantial advance
over single-layer approaches to sifting that make use of patterns alone, and we
look forward to the development of additional sifting heuristics that can further
improve on this approach.
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