StoryAssembler: An Engine for Generating Dynamic
Choice-Driven Narratives

Jacob Garbe

UC Santa Cruz

Santa Cruz, CA
jgarbe@ucsc.edu

Noah Wardrip-Fruin
UC Santa Cruz
Santa Cruz, CA

nwf@soe.ucsc.edu

ABSTRACT

Choice-driven narratives, such as those created through systems
like Twine, are a compelling form of interactive storytelling that
have been around for many years. But as long as this form has ex-
isted, it has grappled with a persistent design problem: consistently
presenting choices that feel both effective and relevant. Brute force
can achieve the desired effect, but usually at the cost of prohibitively
high authorial burden. To tackle this, generative approaches, such
as Mawhorter’s Dunyazad, facilitate authoring procedural choice
content for reuse and recombination. However, many such systems,
while successful on technical levels, have yet to to be used to author
large enough structures to support a full game, and require a high
technical threshold for authors to use. To further development in
this space, we present StoryAssembler, an open source generative
narrative system that creates dynamic choice-driven narratives. It
formed a critical part of Emma’s Journey, an interactive narrative
game, the initial version of which was collaboratively authored
by a team of six writers. In the course of the game’s creation, use-
ful authoring patterns and design lessons were learned, as well as
techniques that made the system approachable for first-time users.

CCS CONCEPTS

+ Human-centered computing — Hypertext / hypermedia;
Systems and tools for interaction design; Hypertext / hyper-
media; - Software and its engineering — Interactive games;
Interactive games.

KEYWORDS

Procedural narrative, interactive narrative design, narrative gener-
ation, choice-based narrative

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FDG 19, August 26-30, 2019, San Luis Obispo, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7217-6/19/08.

https://doi.org/10.1145/3337722.3337732

Max Kreminski
UC Santa Cruz
Santa Cruz, CA

mkremins@ucsc.edu

Ben Samuel
University of New Orleans
New Orleans, LA
bsamuel@cs.uno.edu

Michael Mateas
UC Santa Cruz
Santa Cruz, CA

michaelm@soe.ucsc.edu

ACM Reference Format:

Jacob Garbe, Max Kreminski, Ben Samuel, Noah Wardrip-Fruin, and Michael
Mateas. 2019. StoryAssembler: An Engine for Generating Dynamic Choice-
Driven Narratives. In The Fourteenth International Conference on the Foun-
dations of Digital Games (FDG ’19), August 26-30, 2019, San Luis Obispo, CA,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3337722.
3337732

1 INTRODUCTION

Hyperfiction, a form of interactive media which typically relies
on links between passages of text to tell a story, is a form which
has been with us for many years—yet despite that still offers new
modalities for storytelling, each with their own attendant design
challenges.

While the canon is amorphous and the form endlessly variegated,
typical hyperfiction (such as works written in Twine) can be thought
of as a static graph, where the nodes are pieces of story, and the
edges the links available for the player to click from each node.

StoryAssembler was created as part of a larger project, where
it worked in tandem with a mini-game generator. Both generators
were designed to operate off an input list of design constraints,
which would then result in two generated artifacts in dialogue with
each other—a mini-game, and a hyperfiction. Thus, in contrast to ex-
isting hyperfiction systems, we required a dynamic planner system
which could assemble choice-based hyperfiction, driven by a list of
design constraints, as opposed to explicitly linked nodes. The dy-
namism of the constraints meant that if we chose a static approach
to the problem, the authorial burden would escalate very quickly.
Therefore, we created a system that could result in very large, com-
plex graphs from relatively few nodes, due to the reusability of
nodes and the dynamism of pathways between them.

While this emergent complexity was promising, it came with
attendant authoring and design challenges. Our need to create a
fully-realized playable experience drove us to further refine the
system, and categorize several design approaches that helped har-
ness the dynamism of our system, which we feel are generalizable
to other systems as well. It also resulted in developments to facili-
tate authoring such that writers without programming skills could
author scenes collaboratively.

https://doi.org/10.1145/3337722.3337732
https://doi.org/10.1145/3337722.3337732
https://doi.org/10.1145/3337722.3337732

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

2 PREVIOUS WORKS
2.1 Hyperfiction

StoryAssembler generates dynamic choice-based narratives, similar
in output to hyperfiction or Choose Your Own Adventure (CYOA)
books. These types of narratives have been with us in digital form
for quite some time, with early systems like HyperCard [11] and
Eastgate’s Storyspace [2] creating a fertile initial ground.

Hyperfiction experienced a cultural revival of sorts with the
rapid adoption and proliferation of Twine works in the early 2010s
[9], although there has been a steady stream of systems released
throughout the years such as ChoiceScript [6], Inkle Studios’ Ink
[14], and Undum [18] (with its later enhancement, Raconteur [3])
to name just a few.

Similarly, there is a rich existing field of hyperfiction design prac-
tice which is outside the scope of this paper to detail, with a myriad
of different works making use of their respective software’s affor-
dances to achieve various aesthetic effects through the structuring
of their choices and links. In a more codified approach, some ex-
perts have analyzed such authoring patterns, such as Mawhorter’s
work on Choice Poetics [17] and Ashwell’s Standard Patterns in
Choice-Based Games [1]. Such affordance analysis exists on top of
the implicit design practice outlined in software-specific authoring
guides also tackling the issue, such as with ChoiceScript [7] or
InkleWriter [13].

StoryAssembler exists in the same family, in that its output resem-
bles that of these systems. However, the highest-level procedures it
uses to generate choice-based narratives are planner-based, rather
than explicitly coded by the author, which affords potentially richer
and dynamic structures to be created, but requires different design
sensibilities.

2.2 Planner-driven story systems

StoryAssembler’s core is in line with threads among the planner-
based story generation community, such as Lebowitz’s Universe
system from 1983 [16], which is one of the earliest examples of
planning systems focused on plot generation. Planner-based inter-
active narrative generation has remained an active area of research
to present day, with systems like Robertson’s General Mediation En-
gine [22] making strides towards parser-based generated narrative
worlds.

In comparison to hyperfiction systems, which oftentimes rely
on explicitly linked passages for much of their authoring, planner-
driven story systems rely on heavier computational lifting to as-
semble their stories dynamically from a library of authored ac-
tions/operations. This has been characterized as having two main
approaches: simulationist and deliberative [21]. Simulation-based
(or emergent) systems rely on operating rules for the world and
characters to form the basis of stories, which emerge organically
from the processes. The deliberative approach characterizes situa-
tions set up to be resolved, or desirable states posited to the system,
which has a series of available actions it can take to effect state
changes to reach the desired state. StoryAssembler would be char-
acterized as optimized for deliberative approaches to generation,
although simulationist approaches could be potentially integrated.

StoryAssembler differs from many narrative planners in that it
exposes and diegetically surfaces valid planner operations to the

J. Garbe et al.

HTN Planner

Lexia construction
Control knowledge

11

New
State

Forward State Space Planner

Initial State | = | op i-’ = Op ==| Goal State

Figure 1: StoryAssember works as an HTN planner co-
routining with a forward state-space planner.

reader through narrative choices. This surfacing can also be shown
in scene introductions, where players can read parameterized goal
states as diegetic text, and alter them to suit their tastes before the
planner executes to generate the story. This is expanded upon in
Section 3.1. StoryAssembler is still tightly related to these other
planners if one considers the potential generative space of their
system output as a sort of “choice-based” narrative, where the
planner makes the choices and then shows the resulting traversal
to the player, instead of the player choosing from the myriad options
at each step of execution.

Additionally, it should be noted that historically, the media ar-
tifacts generated by many planner systems are often not as fully
realized as ones generated by people authoring with hyperfiction
systems, as the primary computational research goal for planners
can often be accomplished with simple sentences used as story beats,
or even through re-purposing existing texts by breaking them into
their component parts and procedurally traversing them, such as
Yu and Riedl’s work with CYOA books [27]. It was important in
the development of StoryAssembler that the focus remained on the
final product being recognizably a choice-based narrative that could
hold its own alongside more traditionally authored Twine-based
hyperfiction, which necessitated a hybrid approach in system de-
velopment. In some cases this meant starting from simple planning
structures with little generativity that were easy to author, then
adding in more robust and generative operations and states later
on as part of the editorial process, which required more complex
design thinking to achieve. More details on that can be found in
Section 6.

3 SYSTEM DESCRIPTION

StoryAssembler takes a library of content and assembles it together
into a choice-based narrative. Specifically, it assembles Fragments
(3.3) from a Fragment Library (3.2) to satisfy all the items on the
Story Spec (3.1), using Templated Text (3.4) to further communi-
cate state to the player.

It accomplishes this through two distinct algorithms working in
tandem (Fig. 1) to create a graph of connected “fragments”, where a
fragment is composed of displayed body text, and a list of choices
that lead to other fragments.

StoryAssembler: An Engine for Generating Dynamic Choice-Driven Narratives

At the highest level, StoryAssembler is a forward state-space
planner [10]. Each scene has a “starting state” with initial black-
board values of booleans, strings, or integers, and a “story spec”,
composed of narrative scene goals also represented as blackboard
values, such as introduceNemesis eq true.

When executed, StoryAssembler looks at the starting variables’
states, looks at the story spec as a list of desired variable states,
and then assembles fragments to push it closer to that goal. It does
this by recursively searching the library for components—be that
body text or choices—to maximize progress towards the story spec
state. Additionally, it scores fragments higher if they link to other
fragments that make goal progress, or incorporate into themselves
other fragments that make goal progress as compound fragments.
In this way, the search is similar to one done by a hierarchical task
network (HTN) planner [5], where each fragment in the library
specifies a set of sub-tasks to pursue (e.g. finding choices or body-
text with specific properties).

The final assembled fragment represents the best next step for
the forward state-space planner, and it continues in this manner
until the scene ends. In short, StoryAssembler greedily optimizes for
fragments that fulfill the maximum number of spec entries, as well
as every choice in that fragment going to subsequent fragments
that fulfill the maximum number of spec entries.

It must be noted that choice-based narratives are a particularly
interesting and fruitful domain for planning systems, due to the
additional combinatoric factor in the assembly of choices and dis-
played framing text. Because the framing text, the choice label,
and the destination of the choice link are each their own atomic
unit, it means those fragments can combine effects as compound
operations, opening up a wide space of possibilities.

After each choice the reader clicks, the system re-evaluates the
current state, looks at the story spec, and re-plans to assemble
the next fragment accordingly. This “lazy evaluation” was chosen
because in its initial project (Emma’s Journey) a mini-game con-
tinuously runs in parallel, affecting StoryAssembler’s blackboard
state. Therefore, it made sense to not evaluate the path forward
until the moment of the player’s click, in case an originally valid
state was invalidated by gameplay while the text was displayed, or
the reverse.

Additionally, while StoryAssembler operates in “live” mode, it
can change displayed text and choices asynchronously in reaction
to other game processes, or elapsed time, as detailed in Section 3.3.

3.1 Story Specs

Each scene in StoryAssembler has a corresponding story spec
containing a series of “spec entries” (Fig. 2). A spec entry, like
blackboard entries, can contain boolean, string, or integer val-
ues, and authors may use them for anything from dramatic beats
(introducefFriend eq true) to mood conditions (tension gt 5)
or flags to inform the system where the reader has been, or which
choices they’ve made (complimentedWaiter eq true). Spec en-
tries can be roughly ordered through possession of the optional
tags “first” or “last,” but in general StoryAssembler treats them
as an unordered list. The system will end the scene once every
spec entry has been satisfied at some point in the story (if a later
fragment sets a spec entry bool such that it is invalid, it doesn’t

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

[
conditio
"condition
conditio
conditio
"conditio
conditio

blishSettingDinner eq true”},

ablishDefenseTomorrow eq true™},
"EmmaDefenseFeeling eq true" },
"EmmaJobFutureBeat eq true”™ },

"EmmaClassTypeBeat eq true™ },

ot Kt Kt N R ot

"condition™:

"friendIsInAcademia eq true" }
condition™: e

"friendIsNotInAcademia eq tru

I
L
I
L

“condition™: “tension gte 47},
"friendTensionRelieved eq tru
ckinWithDisagreer eq true™},
"inactivityIsBad eq true™},
"outro eq true”, "order": "last"}

conditio
condition®:

e e

Figure 2: A sample story spec, detailing beats to be hit
(boolean values) and mood conditions (tension).

“unsatisfy” that entry). This design decision was made so that we
could have more flexibility in the design of beats within a scene
to change underlying state to multiple values as the scene pro-
gressed. For example, if we wanted two characters to increase their
friendliness stat after having an argument, we could put two
spec entries friendliness 1t 2 and friendliness gt 2in our
story spec, and take care that reconciliation content that increased
friendliness had pre-conditions of low friendliness, so that it
didn’t prematurely trigger. This was done also to facilitate splitting
up authoring tasks in scenes without incurring too much cogni-
tive load in having to keep all the story spec items in mind while
authoring.

Spec entries can also be flagged as persistent, which means the
system will always prioritize content that satisfies them, but will
not mark them as satisfied when such content is displayed. This
can be used to make the planner prioritize for repetitive actions,
such as a professor calling on students during a lecture, or taking a
turn in a conversation. Typically pre-conditions are used with such
fragments of repetitive actions to control ordering.

A good example of how spec entries work is the first scene of
Emma’s Journey: the night Emma dines with friends before her PhD
defense. This scene’s story spec contains key items that both com-
municate setting and initiate the narrative dynamics. The story spec
requires two characters to make their cases whether Emma should
pursue academia or activism, that the tension in the room passes
a certain threshold (via fragments that increment a roomTension
variable), and that Emma discusses her own career aspirations. A
library of fragments have been authored that can achieve these
goals in a variety of configurations, which are assembled by the
system into a choice-based narrative.

One of the interesting capabilities with advanced authoring in
StoryAssembler is the ability to make spec entries dynamic, and
exposed to the player as scene settings before the story starts (Fig. 3).
For Emma’s Journey, we implemented this as “cycling links” in the
scene description. Players can click on the links to change their text
values, which in turn affect the spec entries, and the way the scene

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

| @
Dinner With Friends

You are Emma Richards, a PhD student who studies phytoplankton.

Tomorrow, you'll be defending your thesis. Your friends decided to throw
a dinner party for you. One of them is an academic like you, and one is

Were you able to field their questions, while still passing food around
the table?

Figure 3: A scene intro, where dynamic spec entries allow
players to change friends to be activists or academics, and
supportive or critical, as well as Emma’s research focus.

plays out once they begin. Therefore, if the player decides to have
both friends more critical, the resulting story the planner assembles
will have them challenging the player more on their career choices.

3.2 Fragment Libraries

For each scene in StoryAssembler, JSON files of fragments are
specified for use. The ability to specify multiple files became an asset
during authoring in teams, as it allowed writers to each use their
own file, and substitute in placeholder copies of fragments handling
other spec entries that other writers were working on. This allowed
us to easily develop the game with a sort of version control, without
having to negotiate problems such as merge conflicts, which can
be confusing to writers unfamiliar with such systems.

In terms of narrative design pragmatics, this also makes it possi-
ble to split up fragments organizationally by other features, such as
tone, character, or chronology. Or, as in early prototypes of Emma’s
Journey, specify a global library of fragments with highly dynamic,
condition-driven text, that could potentially appear within any
scene in the narrative.

3.3 Fragments

StoryAssembler’s core unit of narrative is the fragment. In their
simplest form, fragments contain a main section of displayed text,
and a list of choices. This is similar to the basic “passage” in Twine.

Fragments can contain pre-conditions that control when they’re
available. This can be used for causal or temporal ordering. Lastly
(and most importantly) fragments can contain effects, which change
the state blackboard. This is what is evaluated to determine if the
assembled fragment makes progress towards the goal state speci-
fied in the story spec. Additionally, state modifications can carry
through between scenes, allowing choices to affect later points of
the narrative. An example of an authored fragment can be seen in
Figure 4.

Fragments can also be compound, or composed of other frag-
ments. For example, a fragment might contain explicit choices, but
in place of “content” (the main text of the fragment) might instead
contain a “request” for any valid fragment that increments ten-
sion. A valid fragment that satisfies that might have content but

J. Garbe et al.

"id": "sampleFragment",
"'content": "The main text of the lexia, which can contain
dynamic templates like {name|protagonist}.”,
"choices" : [
{"gotoId": "sampleFragment2"},
{"condition": "mainCharacterEmotion eq angry"}

1,
"effects" : [
"set sampleFragmentVisited true”,

“addwishlist { ‘condition' : ‘explanation gte 4' }"

1,

"preconditions" : [
"startExample eq true"

1

Figure 4: A sample fragment showing both static and dy-
namic choices, as well as modifying spec items through ef-
fects.

no choices. The resulting compound fragment would trigger the
effects for both of the partial fragments, and would have the text
from the second fragment, with the choices from the first.

There are a variety of methods to link between fragments, rang-
ing from hard-coded and static to dynamic and state-driven. One
can directly link (as done in traditional hyperfiction) to other frag-
ments by fragment ID. More interestingly, dynamic links can be
made by linking through desired state effects. For example, a choice
linking via roomTension incr 1, will procedurally link to any
fragment that fires the intended effect (as long as the preconditions
are true). Identical state conditions can be used for multiple choices,
and the system will choose different paths to satisfy them.

For example, one could write a fragment with three choices, two
of which increase the tension in the room, and one that alleviates it.
StoryAssembler will search the fragment library for unique choice
paths that lead to those state changes, and link them in. This paves
the way for potentially surprising juxtapositions of paths, and
emergent readings that are driven by the underlying state changes
and tracked stats.

Fragments don’t always have to link to other fragments. If no
choices are specified in the fragment, the system finds a new frag-
ment (with valid preconditions) that satisfies one of the remaining
spec entries, and links to it by creating a “Continue” choice. This
frees up authors to author dramatic “beat” structures that have
internal consistency, but are independently ordered.

Again, StoryAssembler’s process is to construct fragments, then
evaluate recursively through the choices afforded by the fragment,
choosing paths that maximize state changes to fulfill spec entries.
In general terms, this means StoryAssembler is always greedily
assembling fragments that both contain as many goal-oriented
effects as possible, and linking to the most goal-oriented fragments
possible. A fragment’s effects, choices, and preconditions therefore
all play into that process, and must be kept in mind while authoring.

As mentioned before, StoryAssembler can also operate in a “live”
mode, where at a given interval it re-evaluates the displayed text
and choices. If the state has somehow changed while the player was
reading the fragment (through an accompanying game mechanic, as

StoryAssembler: An Engine for Generating Dynamic Choice-Driven Narratives

with Emma’s Journey) choices can become unavailable and grayed
out, or similarly become available. This affordance can be used to
inject urgency into player actions, or make procedurally poignant
effects. For example, in a tense conversation with the dean, Emma
might lose access to choices to steer the conversation where she
wants, if the player’s performance in the accompanying mini-game
is lackluster.

3.4 Templated Text

Templated text can also be used to change the presentation of both
fragment content and choice labels. This can be driven by scene
state—for example, authors can add hedges like “umm..” to dialogue
if the state variable “confidence” falls below a threshold. This is
especially useful when used in tandem with live state modifica-
tion, as with Emma’s Journey, where it signals time-sensitivity to
the player, and communicates their mini-game performance has
narrative consequences.

We can also change content more substantially, so that fragments
change under different state contexts. For example, we may decide
to create a fragment “complimentHost” where Emma compliments
the host’s decor if dinner hasn’t started yet, but compliments the
food if that fragment is triggered when dinnerStarted eq true.
In either case, the fragment’s effect to decrease tension is fired, but
the text surfacing that is contextual to the current situation.

Templates can also be used to reference character names, pro-
nouns, and other individual mix-ins, so that fragments can be writ-
ten that are not tied to a specific scene, but rather globally mixed
into scenes if their pre-conditions are valid. This also gives authors
the ability to cast scenes dynamically, or choose different character
qualities before the scene starts that have a perceivable effect on
the story. For example, a challenging character can be authored
simply as “antagonist” and in a previous scene, set as whoever the
player has a disagreement with.

4 AUTHORING PATTERNS

In the course of authoring Emma’s Journey, some useful design
patterns were formalized for procedural choice-based narratives.

4.1 Player-Driven Spec Entries

As mentioned earlier in Section 3.1, templated text can be combined
with spec entries and exposed to the player to give them control
over what types of goals they want to have in the scene. In earlier
versions of the Emma’s Journey interface, this was controlled via
toggle switches and sliders, although the final version was a combi-
nation of clicking different temperature lines on a climate change
graph, and cycling links on an initial scene description (Fig. 3).
Using this pattern, writers can manage complexity entirely through

the dynamism of the story spec, and allow themselves to code more
staticly-linked fragments within the actual work. In practice this led
to story graphs where small sections were relatively self-contained,
and then could be grafted on to each other depending on how the
reader modified the spec entries before starting the scene. While this
approach decreases the combinatorial possibilities for fragments
(in that the self-contained sections are usually what get combined)
making use of templated text can also keep this from seeming too

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

similar between playthroughs, or nonsensical if a certain spec list
combination is chosen that the writers didn’t account for.

4.2 Effect-Driven Spec Entries

In addition to defining a fixed story spec with a number of entries
as the starting place for the entire scene, it is also possible to define
fragments within a scene that, when chosen, extend the story spec
with additional entries through fragment effects (see addWishlist
under “effects” in Fig. 4).

This feature allows the author to group related fragments causally
through such effects and maintain internal consistency, without
cluttering up the main story spec with items that are too specific to
a particular branch or cluster of fragments. This could be especially
useful for segmenting branches or clusters that may not always
be included in the story, such as a collection of fragments corre-
sponding to an optional subplot). In other words, this feature allows
the author to define a nested hierarchy of spec entries, in which
StoryAssembler picks fragments to satisfy “top-level” or initial spec
entries that then augment the spec with additional entries to further
flesh out the goals for this particular instantiation of the scene.

4.3 Parameterized Spec Entries

A scene’s initial spec entries can be parameterized via templates,
allowing state variables modified by other fragments to change
them. In a StoryAssembler project that shares state between multi-
ple scenes (such as the Emma’s Journey project, discussed in greater
detail in the following section), this feature permits the player’s
choices in one scene to directly modify the story spec that is used
to generate subsequent scenes.

4.4 Fragment Available Both As Choice and
Dynamically

When StoryAssembler searches for fragments to automatically con-
tinue the story (by bridging to them with a “Continue” link), it
ordinarily ignores any fragment with a specified choice label. This
prevents it from pulling in fragments that are meant to appear only
as choices within other fragments. However, by creating an inter-
mediary fragment with an appropriate choiceLabel but no main
content of its own that then immediately “redirects” to another
fragment, it is possible for the latter fragment (the target of the
redirect) to be selected both as a choice in direct response to another
fragment, and as a standalone fragment. This feature affords us a
flexible way to hit mandatory story beats, either through chosen
options that are more contextual, or forced through a Continue link
if the player doesn’t choose in that manner.

4.5 Multiple Choice Labels Into One Fragment

A variant of the previous pattern allows you to create multiple
intermediary fragments—potentially with different effects, originat-
ing “parent” fragments, or choiceLabels—that function as multiple
pathways into a single node. This pattern can be used to implement
something like the dynamic choice labels used by Yu and Riedl [28]
to present players with more personally enticing labels for the same
choices given what the system could determine about the player’s
preferences.

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

5 CASE STUDY: EMMA’S JOURNEY

Emma’s Journey is an experimental narrative game that juxtaposes a
choice-driven narrative (implemented as a series of StoryAssembler
scenes) with a succession of abstract mini-games generated by the
Gemini system [25]. It served as a testbed for the development
of StoryAssembler and is the first complete game to make use
of the system. The side-by-side presentation of the narrative and
generated games is reminiscent of Molleindustria’s “two-channel
narrative game” Unmanned [19]. Players experience a series of
scenes from the life of the titular character Emma, initially a climate
researcher preparing to defend her PhD dissertation, and make
choices that influence the progression of Emma’s career while the
world’s climate changes in the background.

In each scene the player is presented with a single generated
mini-game, which may interact with the narrative in a variety of
different ways. In one scene, for instance, Emma is eating dinner
with her friends, and the player must play the mini-game to pass
food around the table. Failure to do so with sufficient frequency will
result in the game interrupting the narrative, blocking progression
until the player passes the food again. In other scenes, the player
must play the game to clean up a beach while holding a conversation
with fellow volunteers; to maintain Emma’s concentration during
a lecture in front of her class (resulting in a narrative failure that
ends the scene prematurely if concentration is totally lost); or to
keep Emma’s thoughts organized as she meets with the dean to
discuss a possible change in position. [23]

Gemini, the system responsible for generating the mini-games
that accompany each narrative scene, is a game generation tool
based on what Treanor et al. term proceduralist readings [26]: in-
terpretations of a game’s “dynamics, aesthetics, and higher-level
meanings” deduced directly from its mechanics, in conjunction with
a corpus of cultural knowledge. Gemini accepts as input a file of de-
sired “readings” or interpretations for the generated game, specified
in the form of a logic program, and uses answer set programming
to work backwards from these specifications and construct games
that can be read in the desired ways.

These mini-games are in constant dialogue with StoryAssem-
bler, in some cases affecting story variables in real time. We use
this to toggle availability of narrative choices gated on character
qualities, in a manner reminiscent of Quinn’s Depression Quest [20].
Indeed, some of the most poignant affordances can result from
this: a mini-game which requires constant attention as the reader
watches Emma’s narration grow increasingly nervous, or confident
action choices graying out as the player’s performance in the game
lags behind.

The trade-off is that StoryAssembler must re-plan at each reader
choice, since the mini-game may change the state in the interim
before the next click, such that those pathway destinations are no
longer optimal or even valid.

6 AUTHORING FOR EMMA'’S JOURNEY

For Emma’s Journey, six writers were brought on to tackle the
task of writing eight scenes of content. At the time, they were all
starting in an undergraduate games program, and thus had—at the
time—somewhat limited exposure to programming, although an
avid interest in it, and of course a high interest in games. A fair

J. Garbe et al.

number of them had experience with systems such as Twine, but
had never pushed into more procedural narrative territory.

As many practitioners might well know, authoring procedural
narratives adds additional challenges to the myriad design con-
siderations particular to creating static digital narratives. In the
course of onboarding our writers, we fell into a 3-step rhythm of
crafting high-level considerations, then moving into more granular
authoring in later sessions.

Typically, the first design meeting for a new scene would be
spent discussing and formulating the scene’s beats and dynamics.
These would be formalized as spec entries for the scene, so that we
had a solid—if abstract—idea what would take place. These spec
entries would be divvied up between writers as their section of the
scene to write. In the next meeting, we would focus on drafting
in fragments with placeholder text, but with appropriate effects to
satisfy spec entries, and preconditions to trigger in an appropriate
manner. Once those were locked in, only in subsequent meetings
did we zero in on the fragment text itself, and integrated templates
where necessary to surface the underlying state to the reader. This
included things such as hedges when confidence dropped, or more
confrontational language when anger was higher.

As mentioned above, fragments in StoryAssembler are stored
in JSON files, and while there were occasional syntax debugging
problems, we found it overall to be an accommodating and light-
weight data format for writers to use. We also found the use of Tim
Jansen’s HanSON (JSON for Humans) plugin [15] incredibly useful,
as it allowed authors to comment their JSON files with information
necessary for narrative design, and to assist when collaboratively
editing files together.

In feedback gathered at the end of the project, we found that a
common thread of frustration for the writers was in “no path found”
errors, which is when the system still had items on the story spec
to fulfill, but no valid way to instantiate content from the library
to fulfill them. The reasons for this could be myriad: an added
fragment that shows up earlier than anticipated and invalidates
a later fragment’s preconditions; a typo on an effect that slips by;
a removed spec item that decreases the weight of the expected
fragment such that it no longer appears.

The knee-jerk reaction when confronted with these problems
was to prescriptively restrict fragments with stringent pre-conditions,
so that the writer knew the one place it could show up, and plan
accordingly. However, that strategy undermines the core goal of
the system to create generative narratives. If content is state-driven,
but there’s only one possible point the content can appear, with
one set of choices, then it might as well be statically linked. Ideally,
most content in these narratives should be capable of appearing in
at least one other narrative position, in order to make the most use
of the system affordances.

What was found, however, was that as we pushed more dy-
namism, the narrative debugging process became very slow and
sensitive. Essentially, the disconnect was that changes authors made
frequently had unintended or nonsensical effects on the structure
of the story. This was further exacerbated by the push for longer
scenes, which meant small tweaks to fragments that previously ap-
peared at the beginning of the playthrough could change things near
the end, which wouldn’t be apparent unless you played through
making the correct choices to get to that segment.

StoryAssembler: An Engine for Generating Dynamic Choice-Driven Narratives FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

Intro

A.

parent_flontpage

Intro

5

parent_frontpage

=

frontj
‘ge ———CLIMATE-REFUGEES FLOOD GITIES

lmnlgge — species
SHRIMP-THREATENED-BY-CH:
wiaina ooans—)
—
)'///
—~

Figure 5: A test sequence with two different structures, based on whether nodes with articlesRead values are considered the

same, or different.

In short, once we started creating narratives that were longer
than test cases, it became highly desirable to see the total poten-
tial structure of the narrative, thus making the effects from small
changes more visible.

6.1 Data Visualization

Without a tool, the only way to double-check content authoring is
through exhaustive traversal of the choices. Due to their dynamic
assembly, this means the entire structure must be re-verified with
each added fragment or choice, to ensure a changed or added frag-
ment isn’t showing up in an undesired spot due to unforeseen state
conditions.

Therefore, the visualization solution created for this problem
needed to show three things: the assembled choice structure, when
spec entries were being fulfilled, and how content was being re-used.
Given that the code underlying StoryAssembler was under active
development, we chose to collect data by aggregating automated
playthroughs using the same procedures called in-program, so that
any updates to how stories were formed would be reflected in the
visualization. The resulting data was displayed as an interactive
directed graph using the Cytoscape.js library [8]. We chose (and
recommend!) this library because it comes with built-in graph
traversal and layout algorithms, which streamlined some of the
development. In addition to graph layout, other strategies were
used to expose some of the underlying structure.

In the visualization, we specify a subset of the narrative’s state
variables to establish whether a node in the structure could be
considered structurally identical under different contexts. A good
example is a short test segment where Emma is sitting in an airplane
reading the newspaper. After an introduction (which fulfills an
introductory spec entry) she has a choice to read any of four articles,
incrementing a state variable articlesRead. When four articles
are read, the last spec entry is fulfilled and the segment ends.

If we set the visualization to not consider articlesRead as
a differentiating state value, we get a flower-like structure with
the central node as the recurring fragment (Figure 5a). If we set
articlesRead as a differentiating state value, however, we get a
different structure (Figure 5b) where the recurring node, although
identical in content, appears as a separate entry. However, they are
still grouped together in a box, due to their shared content ID. This
type of viz flexibility is desirable, as there are cases where authors
may want to change what is considered a revisited node, in order
to ensure the proper state changes are occurring. This may also
be a good strategy to use in works where most of the dynamism
results from state, and the viewer can toggle which variables are
being considered to differentiate a node as unique.

Blue nodes are used to signal when fragments are satisfying
spec entries. Right-clicking nodes brings up a contextual menu,
allowing the viewer to highlight narrative paths leading to this
node. Additionally, the viewer can also use this menu to see which
fragments were considered valid and invalid by StoryAssembler

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

when it selected that fragment as the best fit in the progression.
This is useful if the author has in mind a specific spot for a fragment,
but it isn’t currently being assembled there. Lastly, paths between
nodes are also aggregated into thicker lines in the case where
multiple unique playthroughs traverse the same connection. This
helps convey the scale of difference between main paths and unique
side paths at a glance.

Because of these features, authors were able to locate out-of-
place nodes in initial scene drafts quickly, and see if tweaks to
those nodes (be that in conditions, effects, or some other detail)
resulted in correct placement across many branches. It would also
show when nodes were inadvertently orphaned by changes to other
parts of the story (typically by modifying state the orphaned nodes
depended on) thus saving time in some of the initial stages of scene
composition.

7 LESSONS LEARNED

7.0.1 Pragmatics. In terms of content authoring, while JSON is a
lightweight data format to write in, it is still error-prone and unfor-
giving when commas or quotation marks are forgotten (errors that
even seasoned programmers consistently make). Especially for au-
thors who find dynamic narrative systems intimidating, simple syn-
tax errors can be mistakenly attributed to more technical/systemic
problems, discouraging them from engaging the system on more
than a superficial level. Additionally, more complex fragments are
composed of multiple data fields that are required for StoryAssem-
bler to correctly parse, and errors ensue if any are forgotten.

To combat this, an effort was made to quickly bootstrap a webform-
based authoring interface that would output the necessary JSON
files [4]. While initial usage was favorable, more work was needed
to handle edge cases resulting from advanced authoring structures.
Rather than discouraging content using such advanced structures
by splitting authoring into “tool-based” and more difficult “man-
ual” groups, we opted to stick with direct JSON editing, leaving
the tool in the realm of future work. When taken to completion,
however, we believe this tool will significantly decrease simple bugs
and greatly increase author productivity, especially when used in
combination with the existing graph visualization tool.

There are two main takeaways from creating Emma’s Journey:

(1) dynamic authoring hinges heavily on authors understanding
the impact of new content on existing content dynamics

(2) asingle procedural narrative system can enable dramatically
different narrative designs, which can each have their own
unique structural affordances and challenges

7.0.2 Dynamic Authoring and Gulf of Execution. Shneiderman’s
concept of “direct manipulation” is a useful framing for talking
about authoring challenges for dynamic narrative systems. Essen-
tially, direct manipulation is a goal for interfaces that can be used by
novices easily, experts with fluency, and with a tight loop between
an action taken in the tool, and its effect [24]. Because dynamic
narrative creation already requires authors to keep many things in
mind-the characters, the story, the aesthetics, the “possibility space”
of the provided choices and how they may change given state-we
want to minimize mental overhead for system-driven requirements
as much as possible. Additionally, we want to enable authors to see

J. Garbe et al.

these possibility spaces, and understand how their content changes
affect it.

Hutchins et al. elaborated on direct manipulation as being the
result of minimizing the Gulf of Execution and the Gulf of Evaluation
[12]. The former regards the distance between action and realizing
one’s goal, the latter the overhead required to understand if one
has reached it.

We found that StoryAssembler’s ability to support both static
and more dynamic processes meant that, when hard-to-find nar-
rative bugs manifest, authors tend to reduce the procedurality of
their story structures and link choices together statically just to “get
something reliably working”. Essentially, authors have a comfort
zone for gulf of execution and evaluation, and will reduce content
complexity to stay within that area. Given that we wanted to push
the dynamism as much as possible, this capitulation over time some-
what undermined the long-term dynamic goals of the project. Our
JSON editor attempted to shorten the gulf of execution, and the visu-
alization the gulf of evaluation, but tool enhancements were needed
to reliably represent more complex structures in longer narratives,
which is exactly where authors need the most support. For the
editor, an example is the aforementioned issues with edge cases in
complex fragments (with dynamic choices or content compounded
from several nodes). For the viz, a particularly thorny example is
how best to represent the traversal graph where the indexicality
of each node (fragment) is very high, but differentiating between
different cases of state-dependent linkages is very important.

In the future, this might be avoided by treating authoring re-
quirements and system capabilities more as equal partners. For
Emma’s Journey, it might have served better to balance complexity
such that the authoring tools kept pace with system capabilities,
rather than extending system capabilities beyond the reach of the
authoring tools. While we did push the dynamism of the system
a great deal, complex structures many times required extensive
“design debugging” to ascertain why certain content was being dis-
played at certain times, which cut into time that could have been
used to deepen the narrative content.

7.0.3 Narrative Design. Our initial goal was to reduce “authorial
burden” usually incurred by static choice-based narratives, by virtue
of a dynamic system that could re-combine and re-use content con-
textually. While the system certainly afforded us the capability
to do so, we incurred a different burden in the form of dynamic
narrative design challenges. More than some “gulf” of execution
or evaluation in regards to an author’s plan, authors (even ones
with experience in other dynamic narrative systems) found it chal-
lenging just creating dynamic narrative structures that used the
full system capabilities. The formalization of authoring patterns
helped alleviate this, but committing time up front to working out
the implications of complex system design, what narrative design
is enabled by it, and what effect is desired through it, is something
future projects in this space should account for.

For example, the three StoryAssembler authoring patterns re-
garding spec entries (player-driven, effect-driven, and parameter-
ized) gave rise to very different narrative designs, emphasizing
dynamism at different inflection points of the writing. For player-
driven, it was all about state management of variables set before

StoryAssembler: An Engine for Generating Dynamic Choice-Driven Narratives

the scene even started. For effect-driven, it was more about estab-
lishing semi-autonomous groupings of content and managing state
before and after a grouping executed, such that if one grouping ran,
it didn’t inadvertently invalidate another group’s conditions. For
parameterized spec entries, a longer multi-scene design approach
was required, in order to properly surface how choices taken in
earlier scenes were reified as plan changes in later scenes.

Recognizing the design patterns one’s system affords and play-
ing to those strengths is critical to content creation. Many times
with procedural content systems, there comes a “tipping point” in
authoring where the system’s expressivity far outstrips what could
be achieved with conventional strategies. However, until that point
is reached, many times the artifacts the system presents to readers
or players aren’t representative of the system’s full capabilities.
Thus, discovering and developing these design patterns accelerates
progress towards crossing that boundary, and the system expressing
itself to its fullest capabilities.

As perhaps an even more generalizable lesson for systems in
this space, many of these issues only crop up during the process of
creating fully-realized narratives with said systems. Furthermore,
the design process and formalization of how content is authored
within these systems is an integral part of their contribution to the
field. Procedural narratives require different design thinking than
traditional narratives, often-times tuned to the unique affordances
of the systems themselves. And while system re-implementations
may be rare, the kinds of dynamic narrative experiences these
systems are pursuing many times overlap. Therefore, system-driven
design insights, gained through creating fully-fledged experiences
with them, can be just as valuable as the technical insight gained.
There’s a rich field of inquiry in this direction to explore, and it’s
our hope that the continuation of work in this area results in a
concomitant advancement in its design theory.

8 OPEN SOURCE AND FUTURE WORK

StoryAssembler has been open sourced as a JavaScript library, with
the hope that others might try their hand at writing and further
developing procedural choice-based narratives.

In keeping with the lessons learned through the creation of
Emma’s Journey, the focus of future efforts is on facilitating author-
ing. From an engineering standpoint, this means tackling further
development of the authoring environment and feedback messages,
such that authors without backgrounds in planning systems or
even dynamic story generation can create interesting stories with
it. Currently it’s possible to author a wide variety of hyperfictions—
from traditional fare (though dynamically assembled) to JRPG-style
visual novels—complete with stat bars and state-driven character
portraits (as seen in Emma’s Journey). However, the development of
template projects and tutorials are also much needed to jump-start
the writing process for beginners, and provide a “recipe book” for
all the different capabilities this system affords.

On the more technical side, StoryAssembler’s architecture is set
up such that, with a bit more work, it can facilitate swapping out
different algorithms for the current forward state-space planner.
It’s our hope, with a bit more streamlining, that perhaps future
contributors could find the library useful even as a game framework
to interface with their own story generation systems.

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

9 PROJECT LINKS

e StoryAssembler is available as an open source library at
https://github.com/LudoNarrative/StoryAssembler,
along with a guide to getting started.

e Emma’s Journey can be played online at
https://emmasjourney.soe.ucsc.edu/.

e A demo of StoryAssembler’s viz tool can be found at
https://games.soe.ucsc.edu/storyassembler.

10 CONCLUSION

Hyperfictions, and specifically choice-based narratives, are an ex-
pressive and fertile medium for computational research. The per-
sistent design challenge of crafting choices that account for player
affordance and context without incurring prohibitive authorial bur-
den is ripe for computational intervention, through systems that
can dynamically assemble choice structures to meet those needs.
StoryAssembler is a good first step in this process, enabling the
creation of dynamic narratives without requiring programming
knowledge. However, the revealed complexities of dynamic nar-
rative design present their own unique challenge, and their own
corresponding burden. To address this in the course of authoring
StoryAssembler hyperfictions, design patterns were formalized that
we feel will help in future work to streamline and simplify the design
process, ultimately decreasing the burden of authoring. Regardless,
StoryAssembler can serve as a happy medium between more tech-
nical systems tackling story generation, and hand-authored works
from hyperfiction systems.

11 ACKNOWLEDGEMENTS

The authors would like to thank our many playtesters for their time
and valuable feedback, as well as our dedicated team of writers.
This material is based upon work supported by the National Science
Foundation under Grant No. 1409992.

REFERENCES

[1] Sam Kabo Ashwell. Jan 26, 2015. Standard Patterns in Choice-Based Games.
Retrieved Jan 3, 2018 from https://heterogenoustasks.wordpress.com/2015/01/26/
standard- patterns-in-choice-based-games/

[2] Mark Bernstein. [n. d.]. Storyspace. Retrieved Jan 3, 2018 from http://www.
eastgate.com/storyspace/

[3] Bruno Dias. [n. d.]. Raconteur. Retrieved Jan 3, 2018 from https://sequitur.github.
io/raconteur/

[4] Jeremy Dorn. [n. d.]. JSON Schema Based Editor. Retrieved Jan 3, 2018 from
https://github.com/json-editor/json-editor

[5] Kutluhan Erol, James Hendler, and Dana S Nau. 1994. HTN planning: Complexity
and expressivity. In AAAL Vol. 94. 1123-1128.

[6] Dan Fabulich. [n. d.]. ChoiceScript. Retrieved Jan 3, 2018 from https://github.
com/dfabulich/choicescript

[7] Dan Fabulich. [n. d.]. Introduction to ChoiceScript. Retrieved Jan 3, 2018 from
https://www.choiceofgames.com/make-your-own-games/choicescript-intro/

[8] Max Franz, Christian T Lopes, Gerardo Huck, Yue Dong, Onur Sumer, and Gary D
Bader. 2015. Cytoscape. js: a graph theory library for visualisation and analysis.
Bioinformatics 32, 2 (2015), 309-311.

[9] Jane Friedhoff. 2013. Untangling Twine: A Platform Study.. In DiGRA conference.

[10] Malik Ghallab, Dana Nau, and Paolo Traverso. 2016. Automated Planning
and Acting. Cambridge University Press, 37-39. https://doi.org/10.1017/
CB09781139583923

[11] Danny Goodman. 1988. Danny Goodman’s Hypercard developer’s guide: the
ultimate guide to Hypercard stack development. Bantam Books, Inc., New York,
NY.

[12] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manipu-
lation interfaces. Human-computer interaction 1, 4 (1985), 311-338.

[13] Jon Ingold. [n. d.]. Writing With Ink. Retrieved Jan 3, 2018 from https://github.
com/inkle/ink/blob/master/Documentation/WritingWithInk.md

https://github.com/LudoNarrative/StoryAssembler
https://emmasjourney.soe.ucsc.edu/
https://games.soe.ucsc.edu/storyassembler
https://heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-choice-based-games/
https://heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-choice-based-games/
http://www.eastgate.com/storyspace/
http://www.eastgate.com/storyspace/
https://sequitur.github.io/raconteur/
https://sequitur.github.io/raconteur/
https://github.com/json-editor/json-editor
https://github.com/dfabulich/choicescript
https://github.com/dfabulich/choicescript
https://www.choiceofgames.com/make-your-own-games/choicescript-intro/
https://doi.org/10.1017/CBO9781139583923
https://doi.org/10.1017/CBO9781139583923
https://github.com/inkle/ink/blob/master/ Documentation/WritingWithInk.md
https://github.com/inkle/ink/blob/master/ Documentation/WritingWithInk.md

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

[14] Jon Ingold and Joseph Humfrey. [n. d.]. Ink. Retrieved Jan 3, 2018 from

[15]
[16]
[17]

(18]

https://www.inklestudios.com/ink/

Tim Jansen. [n. d.]. HanSON - JSON for Humans. Retrieved Jan 3, 2018 from
https://github.com/timjansen/hanson

Michael Lebowitz. 1983. Creating a Story-Telling Universe. MIT Research Lab
Technical Report CUCS-055-83. Columbia University, New York, NY.

Peter Andrew Mawhorter. 2016. Artificial intelligence as a tool for understanding
narrative choices. Ph.D. Dissertation. UC Santa Cruz, Santa Cruz, CA.

Tan Millington. [n. d.]. Undum. Retrieved Jan 3, 2018 from https://github.com/
idmillington/undum

[19] Jim Munroe. [n. d.]. Molleindustria: Unmanned. Retrieved Jan 3, 2018 from

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

http://unmanned.molleindustria.org

Zbe Quinn. [n. d.]. Depression Quest. Retrieved Jan 3, 2018 from http://www.
depressionquest.com/

Mark O. Riedl and Robert M. Yound. 2010. Narrative Planning: Balancing Plot
and Character. Journal of Artificial Intelligence Research 39 (2010).

Justus Robertson and R Michael Young. 2018. Perceptual Experience Management.
IEEE Transactions on Games (2018).

Ben Samuel, Jacob Garbe, Adam Summerville, Jill Denner, Sarah Harmon, and
Gina Lepore. 2017. Leveraging Procedural Narrative and Gameplay to Address
Controversial Topics. In 2017 Workshop on Computational Creativity and Social
Justice (CCSTW ’17), G. Smith, A. Sullivan, and Brown D. (Eds.).

Ben Shneiderman. 1981. Direct Manipulation: A Step Beyond Programming
Languages (Abstract Only). SIGSOC Bull. 13, 2-3 (May 1981), 143-. https:
//doi.org/10.1145/1015579.810991

Adam Summerville, Chris Martens, Sarah Harmon, Michael Mateas, Joseph Carter
Osborn, Noah Wardrip-Fruin, and Arnav Jhala. 2017. From Mechanics to Meaning.
IEEE Transactions on Computational Intelligence and Al in Games (2017).

Mike Treanor, Bobby Schweizer, Ian Bogost, and Michael Mateas. 2011. Pro-
ceduralist Readings: How to find meaning in games with graphical logics. In
Proceedings of the 6th International Conference on Foundations of Digital Games.
ACM, 115-122.

Hong Yu and Mark O Riedl. 2012. A sequential recommendation approach for
interactive personalized story generation. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1. International
Foundation for Autonomous Agents and Multiagent Systems, 71-78.

Hong Yu and Mark Owen Riedl. 2013. Data-Driven Personalized Drama Manage-
ment. In 9th Artificial Intelligence and Interactive Digital Entertainment Conference.

J. Garbe et al.

https://www.inklestudios.com/ink/
https://github.com/timjansen/hanson
https://github.com/idmillington/undum
https://github.com/idmillington/undum
http://unmanned.molleindustria.org
http://www.depressionquest.com/
http://www.depressionquest.com/
https://doi.org/10.1145/1015579.810991
https://doi.org/10.1145/1015579.810991

	Abstract
	1 Introduction
	2 Previous Works
	2.1 Hyperfiction
	2.2 Planner-driven story systems

	3 System Description
	3.1 Story Specs
	3.2 Fragment Libraries
	3.3 Fragments
	3.4 Templated Text

	4 Authoring Patterns
	4.1 Player-Driven Spec Entries
	4.2 Effect-Driven Spec Entries
	4.3 Parameterized Spec Entries
	4.4 Fragment Available Both As Choice and Dynamically
	4.5 Multiple Choice Labels Into One Fragment

	5 Case Study: Emma's Journey
	6 Authoring for Emma's Journey
	6.1 Data Visualization

	7 Lessons Learned
	8 Open Source and Future Work
	9 Project Links
	10 Conclusion
	11 Acknowledgements
	References

