IEEE TRANSACTIONS ON GAMES, VOL. 14, NO. 3, SEPTEMBER 2022

329

Danesh: Interactive Tools for Understanding
Procedural Content Generators

Michael Cook

Abstract—In order to advance the field of procedural content
generation, and transfer knowledge from academic research to
everyday use, we need to develop tools that make generative systems
easier to understand and control. In this article, we introduce
Danesh, a plugin to the unity game development environment,
which helps provide a suite of tools that provide automation or
analysis of different aspects of procedural generators. We describe
here the features of Danesh, including automatic analysis of gen-
erated content, the visualization of generative spaces, automatic
parameter discovery, and interface smoothing. We also provide
reflections on our development of the tool so far.

Index Terms—Computational creativity, generative software
analysis, procedural generation.

1. INTRODUCTION

ROCEDURAL generation is the application of generative
P algorithms to the production of content for games. Procedu-
ral generators are an important part of the landscape of modern
game development, not only the reserve of programmers but
also used by artists [1], musicians [2], writers [3], and people in
many other roles. Despite being in common use among game
developers, attitudes toward procedural generation are often
negative, with many games now explicitly marketing themselves
as including “hand-crafted” content. In his 2015 GDC talk Grant
Duncan, Art Director on No Man’s Sky, which extensively used
procedural generation, said that he felt skeptical toward the idea
initially and many of his peers told him procedural generation
would “take control away from artists” and produce “endless,
boring” content [4].

Grant also cites the confusion and lack of understanding
among gaming audiences, too: “after announcing No Man’s
Sky, if you read the comments [on online articles] it turns out
that nobody seems to know what procedural generation actually
means.” Duncan goes on to explain that procedural generation is
“abig box of maths.” The description of procedural generation as

Manuscript received 20 April 2020; revised 25 September 2020; accepted
27 October 2020. Date of publication 7 May 2021; date of current version
15 September 2022. The work of Michael Cook was supported by the Royal
Academy of Engineering Research Fellowship Scheme. (Corresponding author:
Michael Cook.)

Michael Cook, Jeremy Gow, and Simon Colton are with the Queen Mary Uni-
versity of London, E1 4NS London, U.K. (e-mail: mike @possibilityspace.org;
jeremy.gow @gmul.ac.uk; simon.colton@qgmul.ac.uk).

Gillian Smith is with Worcester Polytechnic Institute, Worcester, MA 01609
USA (e-mail: gmsmith@wpi.edu).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TG.2021.3078323.

Digital Object Identifier 10.1109/TG.2021.3078323

, Jeremy Gow, Gillian Smith, and Simon Colton

“maths” was common throughout the development of the game,
both in the PR and the subsequent press coverage [5].

This ironic detachment highlights a major problem with
procedural generation in the modern games industry: although
prevalent, powerful, and popular, procedural generation is not
well understood and this contributes to negative preconceptions.
We believe that this feeling of a lack of control, and the per-
ception that procedural generators are a dark art of “maths,”
is caused in part from the way that procedural generators are
commonly presented. Generative algorithms are often shown
as black boxes, with mysterious input parameters that behave
inconsistently, and outputs that vary wildly and have unknown
distributions. In addition to this, a common language for dis-
cussing and thinking about procedural generators has been slow
to develop. This is due to the field being heavily fragmented—
music generators are not spoken about in the same context as
level generators, for example. It is also exacerbated by a lack of
code reuse between projects or developers.

To attempt to tackle some of these problems, we have de-
veloped a tool called Danesh. Danesh is an open-source plugin
for unity, one of the most popular game development tools that
allows procedural generators to be viewed, edited, and analyzed
in a single unified interface. It requires minimal setup to work
with a generator, and can work with any kind of content (as long
as the user can perform some simple setup). Danesh offers simple
features such as editing inputs and viewing outputs; as well as
more complex operations such as viewing the distribution of
a generator’s outputs, or automatically searching the parameter
space for configurations that produce a specific outcome. Danesh
has been presented at the 2017 Game Developers Conference,
the largest industry event in the world, as well as used as a
teaching tool in classrooms.

In this article, we outline the current features of Danesh, from
simple tasks such as loading and viewing generators through
to more complex analytical techniques. In doing so we also
introduce for the first time automatic parameter discovery, a new
technique for searching a code library to automatically suggest
possible inputs to a generative system. In addition to this system
description, we also reflect on our experience of building a tool
aimed at game developers. We conclude by looking at the future
paths for Danesh’s development.

II. RELATED WORK

A. Assistive Interfaces for Generative Systems

Several tools exist which attempt to provide assistance in
designing a procedural generator. Tanagra [6] is example of

2475-1502 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5898-9884
mailto:mike@possibilityspace.org
mailto:jeremy.gow@qmul.ac.uk
mailto:simon.colton@qmul.ac.uk
mailto:gmsmith@wpi.edu
https://doi.org/10.1109/TG.2021.3078323

330

Fig. 1. Screenshot of Danesh’s main user interface, showing parameter con-
trols (left) and an example output (right).

Strategy Game Map Sketching

e

i
il

- =
= I =
- u
[T

|

1

Fig.2. Screenshot of the Sentient Sketchbook’s interface. Alternative outputs
are on the right, metrics and analysis are in the central area.

early research in assistive tools for generator design. Tanagra
allows the user to design part of a platformer level, expressing
constraints on the remainder of the design, which the tool then
attempts to fill in. The user can go on to respond to this or see
other output from the system.

The Sentient Sketchbook [7] is a tool for designing 2-D spaces
for a variety of game contexts, such as real-time strategy game
levels, or world maps for a role-playing game or story. The
Sentient Sketchbook has an innovative user interface, which
allowed the user to move between detail levels, thus allowing
for high-level constraint expression at a low resolution, before
moving in to examine possible generated content at higher
detail. The Sentient Sketchbook also recalculates and surfaces
metric scores while the tool is being used, allowing the user to
appreciate differences between potential levels that may not be
immediately obvious, as well as constrain along these metrics.
Fig. 2 shows a screenshot of the interface.

The abovementioned systems are examples of specific gener-
ative systems, rather than a general-purpose tool for analyzing
systems. However, their designs offer useful indicators of how
interaction with generative systems can be done. Primarily, these
systems work by alternating phases of users adding constraints
and then the system responding. This is a similar rhythm, which
we aim for with Danesh, except it takes place at a meta-level,

IEEE TRANSACTIONS ON GAMES, VOL. 14, NO. 3, SEPTEMBER 2022

alternating phases of adjusting a space of content, and then
visualizing the results of the changes.

B. Generative Software Analysis

Expressive range analysis (ERA) is a way of analyzing the
behavior of a generative system by sampling its output and visu-
alizing the distribution of various properties of the sample [8].
Smith et al. used this system to analyze the space of artifacts
created by the Launchpad [9] generator, and how it varies based
on varying input parameters to the generator. We explain this
technique more in depth later in this article, as it is a central
part of Danesh’s capabilities. ERAs are often visualized as a
2-D histogram, however, other visualizations have been used
including using clustering, single-property frequency charts, and
studies of change over time.

Core to the ERA approach to evaluating generators is the
definition of appropriate metrics. Canossa and Smith [10] pro-
pose several potential metrics for 2-D platforming games that
move beyond linearity and leniency, as proposed in the original
ERA paper, and include aesthetic and experience-based metrics.
However, these metrics have not been operationalized in existing
generative systems. In [11], the authors evaluate commonly
employed metrics for analyzing platformer level generators.
Writing good and insightful metrics is a crucial step in analyzing
a procedural generator, but both the process and the metrics
remain relatively underexplored. The authors conclude that
metrics alone are not sufficient for understanding a procedural
generator, but also suggests that they are useful in providing
insight.

In [12], Summerville proposes new ways of analyzing pro-
cedural generators that can visualize higher dimensions of data
or provide different kinds of insight to ERA. Corner plots are
suggested as a visualization technique, able to contrast multiple
2-D plots simultaneously, overcoming a limitation of expressive
range, which makes it hard to consider more than two dimensions
at once. Summerville also proposes methods for assessing other
aspects of a generative system, such as how often elements from
a training set reoccur in the output (particularly applicable to the
emerging subarea of PCGML [13]).

C. Explainable Al (XAI)

Danesh is a tool for making sense of complex systems and,
thus, has much in common with research into XAl. In [14],
the authors put forward a proposal for XAl for game designers
(XAID), which suggests different ways of thinking about and
building tools for cocreation in game design, and the challenges
inherent in doing so. The proposed three axes of XAID—
explainability, initiative, and domain overlap—are all relevant
to the design of Danesh.

XAID is especially relevant in the face of a rising interest in
machine learning, which presents many challenges in education
and training. In [15], the authors present tools for visualizing
different kinds of information about the state of a machine
learning system, in the context of a game design task. We share
similar goals in the creation of Danesh, in that our intention is to
create a rich tool that can layer in additional information as the

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

COOK et al.: DANESH: INTERACTIVE TOOLS FOR UNDERSTANDING PROCEDURAL CONTENT GENERATORS 331

user wishes, to help improve their understanding of a dynamic
system.

III. SYSTEM OVERVIEW

Danesh is a plugin for the unity game development environ-
ment, written in C#. Unity is one of the most popular tools
in the world for developing games—>50% of mobile games
are developed with unity, according to their own statistics.' In
addition to being popular among commercial game developers,
unity is free to use, which also makes it a common choice
for students, hobbyists, digital artists, and many more groups
besides. This makes it an excellent platform to target in order to
support a wide variety of generative software developers.

Our guiding philosophy in designing Danesh was to build a
tool that could be customized easily to work with any generator.
This meant developing the tool to be agnostic to the type of con-
tent being generated. As aresult, Danesh has been designed with
“context gaps”—minimal spaces where understanding about the
domain can be supplied by the user. Currently this places a
nontrivial burden on the user, as they must write code to visualize
generated content, measure interesting properties, and identify
important regions of the code. We discuss how we have begun
to overcome these limitations later in this article, through a mix
of intelligent systems that attempt to automate some of these
processes. Overall, we believe that Danesh’s domain-agnostic
design is its greatest strength, and a good approach to building
a tool designed to work with many types of generator.

A. Loading and Viewing Generators

In order to load a generator into Danesh, the user tags parts
of their code with annotations. Annotations label parts of a
codebase, allowing the labeled fields, methods or types to be
discovered through C# metaprogramming. This allows Danesh
to automatically configure itself without major refactoring or
restructing of the game’s codebase, instead simply asking the
user to mark methods or fields that are relevant to the procedural
generation.

In order to minimally run Danesh, the user must mark one
method with the Generator annotation. When Danesh runs,
it scans the codebase for a Generator annotation, and stores a
reference to that method as the generator. If multiple generators
are marked, Danesh allows the user to switch between generators
while using the tool (the interface updates accordingly to show
data and controls relevant to the current generator). In line with
our agnostic approach, Danesh does not know what type of ob-
jectis returned by the generator method. Instead, as we describe
in this section, the user is asked to provide small code snippets
to provide context-sensitive code to Danesh. An example of
this is visualization. Danesh can be run without visualizers, but
if the user wishes to see the output of a generator (which is
recommended for content with a visual component) they can
provide a visualizer method, which takes content output by the
generator as a parameter, and returns a texture, which displays
some kind of rendering of the content. As with the generator

![Online]. Available: https://unity3d.com/public-relations

method, this is written in the codebase and tagged using an
annotation (if the user does not wish to write a visualizer, they
can use an alternate method, which displays the output of an
in-game camera). With these two methods, Danesh allows the
user to open the main Danesh window, generate content, and
display it on the screen. We currently do not support audio
outputs, but this is a point of future work.

With this information configured, the user can now load
Danesh and use the generate tab, which lets them press buttons
to generate and view content (using the discovered annotated
methods). This can be done in bulk or single-shot generation
runs. Fig. 1 shows the main Danesh interface with the generate
tab on the right-hand side.

B. Viewing and Editing Parameters

After viewing content, the next most fundamental feature is
editing inputs to the system. The user can annotate fields in the
codebase with the Tunable annotation to indicate that a field
is of interest as a parameter to the system. The Tunable anno-
tation also allows the user to provide a name for the parameter,
and a maximum and minimum value (if of a numeric type).
Although some parameters do not necessarily have maximum
or minimum values, some Danesh functions require a capped
range of values, and we also require limits in order to display
the parameter in the interface. We recommend the user enters a
range they believe will be interesting to explore or, failing that,
a range of values that is reasonable for the parameter to take
(for example, not exceeding the maximum value seen for that
parameter in the past).

Once Danesh finds a field marked with the Tunable anno-
tation, it creates a slider on the interface that allows the user
to directly edit the value of the field. Fig. 1 shows this basic
interface, with sliders on the left panel.

C. Metrics

Many of the more complex analytical features in Danesh
require insight into the properties of generated content. In order
to obtain this information while also being agnostic to what
content is being generated, we ask users to define metrics,
functions that take a piece of content as an input, and return
a floating-point value in the range [0,1] as output.

Metrics typically are defined to measure a property of the
output that is interesting to the user, and often one which is
related to inputs in an unclear way. For example, if a parameter
for a level generator directly affected the chance of spawning
treasure, then a metric for measuring the amount of treasure in
a level might not be that interesting—the user can intuit this
fairly easily from the value of the treasure parameter. However,
ametric that measures treasure ‘“‘safety”—proximity to enemies,
traps, or distance from the exit—might vary based on other
factors in the generative system and, thus, be more interesting
to measure and visualize.

Danesh supplies several example metrics as part of its default
installation, designed to work on the example generators that
are also supplied with it. These metrics can be easily repurposed
for common content generation tasks too (such as 2-D grids).

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

https://unity3d.com/public-relations

332

Expert users may have little trouble identifying features of their
content they wish to analyze and writing metrics to describe
them. However, this process is harder for novice users, especially
users who may not know how to program—we discuss this in
future work.

Danesh cannot assess the quality or suitability of metrics
defined by the user. For example, if a metric takes a long
time to compute, the overall performance of Danesh will suffer.
Similarly, if the calculation of a metric is affected by randomness
or noise, this might reduce the reliability of any samples. We
discuss in future work how we intend to improve and automate
some aspects of the process of defining metrics.

D. Cellular Automata Example

In order to illustrate different aspects of Danesh, throughout
this article, we use a simple cellular automata-based generator,
which creates 2-D images that can be used to represent game
levels, art, or other content. Our implementation is based on [16].
We configured our implementation for integration with Danesh,
including annotating its key parameters. These parameters are
abbreviated throughout the remainder of this article as initial
solid chance (ISC) (ISC—the percentage chance that a cell is
solid at the start of the simulation); birth limit (BL—the neighbor
count for dead cells to become live); death limit (DL—the
neighbor count for live cells to become dead).

This is one of the sample generators provided with Danesh.
We also include a chunk-based 2-D level generator in the style
of Spelunky, and several maze generation algorithms. For this
article, we use the cellular automata system as a running example
for consistency.

IV. AUTOMATED ANALYSIS IN DANESH

In [8], Smith and Whitehead propose ERA as a way to analyze
and visually represent the distribution of a generator’s output.
In Danesh, we provide a way to automate this process, allowing
users to examine generators through the lens of the metrics they
supplied, and observe how the expressive range changes as they
change the value of parameters.

When asked to perform an ERA, Danesh samples the gen-
erator in question many times—>500 by default—and records
values for all metrics currently defined by the user. The user can
then request an ERA histogram for any two metrics, which is
generated dynamically by Danesh from the gathered data. An
example ERA from Danesh is shown in Fig. 4, with the metric
selection visible at the bottom of the screen.

An ERA provides the user with an understanding of how the
generative system behaves under the current set of parameters.
Danesh can also perform a randomized ERA, or RERA, which
provides the user with a wider picture of how the generative
system behaves across its parameter space. It does this by per-
forming an ERA with a much higher sample size (ten times larger
by default) and for each sample, it randomizes the parameter
settings between maximum and minimum values. The resulting
histograms provide a sense of the distribution of outputs across
all parameterizations. This can reveal surprising areas of the
parameter space, as well as indicate areas of the metric space

IEEE TRANSACTIONS ON GAMES, VOL. 14, NO. 3, SEPTEMBER 2022

[Generator]
public Tile[,]
S/

GenerateMap () {

[Tunable (MinValue: 4, MaxValue:

public int mapWidth;

[Metric]
public static float Density (object _map) {
Y/

[Visualiser]
public Texture2D RenderMap (object _map) {
VYA

Fig. 3. Annotated generator, parameter, metric, and visualizer.

Density : Connectedness ¢

Perform New ERA Switch To RERA Perform New RERA

Fig. 4. ERA in Danesh.

that are unreachable. If an RERA shows that an area of 2-D
metric space has no data points in, it means that across all
random parameter settings there were no outputs with these
metric values. This can suggest that regardless of any param-
eter tweaking, the generator cannot produce outputs with these
metric values, which can be useful information for someone
attempting to obtain a particular output from the generator.
Both ERA and RERA visualizations in Danesh are interactive.
If the user hovers their cursor over any datapoint, they are shown
an output from the sample that had these metric values. This is
useful because it allows the user to make sense of distributions.
Rather than simply knowing an outlier exists, the user can see
the output in question and understand what makes it an outlier. In
an RERA, the user can click on a point in the visualization to set
the current generator to the set of parameters that produced this
output. This makes RERAs a useful exploratory tool, as the user
can hover over points with metric values they are interested in,

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

COOK et al.: DANESH: INTERACTIVE TOOLS FOR UNDERSTANDING PROCEDURAL CONTENT GENERATORS 333

see what the outputs look like, and click to configure their gen-
erator to produce this without adjusting parameters manually.
This is a good example of how Danesh helps shift the emphasis
in interaction from being focused on inputs (editing parameters
and code) to being focused on outputs (thinking about desired
metrics and output styles).

V. AUTOMATED PARAMETERIZATION

ERAs help the user visualize the current behavior of their
generator, and RER As help explore the range of possible outputs
from a system. These are both useful tools for thinking about a
procedural generator in different terms, and by making RERAs
interactive they become useful exploratory tools for seeing dif-
ferent points in a generator’s parameter space. An individual
point in an RERA is often unrepresentative, however—after
clicking on a point in the RERA, the user may discover the
parameterization that produced that sample behaves unexpect-
edly, such as a very high variance in output, or an unexpected
value in some other metric.

Some users have specific goals in mind for their generator,
and can express these goals clearly in terms of the metric values
they intend the output to have. These desired values, interpreted
as the average generator output, are equivalent to the centroid of
the ERA this desired generator configuration would have, since
the centroid of an ERA describes the average metric value of a
large sample of generative outputs. In this example, the user is
trying to find a set of parameters that results in a generator whose
ERA has a centroid closest to a desired set of metric values.

This is a difficult problem to solve manually. ERAs can show
how a parameterization is located in 2-D metric space, but they
cannot help the user know what changes to make to improve
the result, because the impact of parameter alteration is often
nonlinear. Exploring through an RERA is also possible, by
clicking on points that are near to the desired point in metric
space. However, this has the following two limitations: RERAs
can only be shown in two dimensions in Danesh, and the user
may have goals set in three or more metrics; and a sample in an
RERA is not representative of that parameterization and, thus,
is equally likely to be an outlier as it is to be near the centre.

To help overcome this, we have developed an automatic pa-
rameterization process, in which Danesh searches the parameter
space in order to find a set of parameters whose ERA centroid
is as close as possible to a set of metric values provided by
the user. This process uses a hybrid of random search and hill
climbing: Danesh spends 5 s randomly searching parameter
settings, keeping the best results, and then uses hill climbing
seeded with the best output found through random search. This
process can be run for longer to find better parameterizations.
The process primarily scores a parameterization by the differ-
ence between its centroid and the target metric scores, which
means it does not take into account the variance of a generator.
This means that this process can generate parameterizations
with a very large distribution of outputs, or with almost no
variance whatsoever. Incorporating a target variance into this
process remains a point of future work—although simple in
principle, communicating this to the user is a challenge. We
describe this work on automated parameterization in greater

1 BB
0.8
2
£ 06
e —e— Mean
E 04 —8— Mean-2SD
§ — Mean+2SD
0.2
B . - . >
0.2 0.4 0.6 0.8 1

Parameter: ISC

Fig.5. Smoothness analysis, comparing the metric density against the param-
eter ISC for a cellular automata-based generator.

depth, with additional experimentation and comparisons with
other search strategies, in [17].

VI. PARAMETER BEHAVIOR ANALYSIS

The parameters that Danesh presents to a user are derived from
fields in the generator’s codebase, annotated as we described
earlier in this article. Their existence is largely dictated by
the design and structure of the generative algorithm and the
rest of the game’s code, as well as being influenced by the
specific programming style of the person who implemented the
generator. This means that there is often not a clear connection
between a parameter’s value and the generated content, and this
connection can be even harder to intuit if the user of the generator
did not write the code.

To help mitigate these issues, we have developed new analyti-
cal techniques that aim to provide a better understanding of how
aparticular parameter behaves, and what the effect of changing it
is likely to have on the generator’s output. Our aim is twofold: to
provide more complex, deep analytical techniques for the expert
users who can make sense of them; and to augment the under-
standing of novice users with subtle additional information that
does not require complex analysis. We have developed two new
analytical techniques: smoothness analysis and codependence
analysis. Each is useful on its own as a way of investigating a
generator’s behavior, but they have also enabled us to develop
new kinds of interface features for Danesh.

A. Smoothness

Smoothness analysis visualizes how the value of a particular
metric function m changes as the value of a parameter p varies
between its minimum and maximum value. Fig. 5 shows an
example smoothness analysis for one of the example generators
supplied with Danesh, which generates cave-like maps using
cellular automata. This example shows how the metric density
changes as the value of the parameter ISC changes. For each
value of ISC (sampled at regular intervals of 10% of the max-
imum value), we sample the generator 250 times and calculate
the average metric value for the sample, as well as the standard
deviation. We then plot this information on a graph, as shown in
Fig. 5.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

334

As can be seen in this example, changing the value of the
parameter by the same interval can have very different impacts
on the chosen metric. Moving from 0.2 to 0.3, a shift of 0.1, has
a much smaller impact on the average density than moving from
0.3to0 0.4. Similarly, changing the value of the parameter past 0.5
has no effect on the metric at all. We argue that by default, in the
absence of any other information about the system, a user would
expect a parameter to exhibit perfectly linear smoothness—that
is, a straight-line graph with gradient 1 passing through (0,0).
Smoothness analyzes show how parameters deviate from this
expectation, and specifically which parts of their range this
deviation occurs in and to what degree.

B. Applications of Smoothness

Smoothness is another useful tool for generative systems de-
velopers, allowing the user to focus on the relationship between
features of the inputs and outputs of a system. However, in
addition to being useful in isolation, smoothness can be used by
tools such as Danesh to automatically adjust and augment their
interfaces. We use smoothness analysis to perform parameter
smoothing, a process by which a parameter’s original input slider
is replaced with a more natural facade. Normally, a slider on
Danesh’s interface represents a linear range from the minimum
and maximum value a parameter can take. The slider represents
avalue v in the range [0, 1], which sets the value of the parameter
p to the following value:

P = Pmin + (pmax - pmin) X v

where ppin and pp,x represent the minimum and maximum val-
ues p can take, respectively. Parameter smoothing replaces this
slider with a smoothed slider relative to a single metric m. First,
the system performs a smoothness analysis of p against m. Let
Mmin and Mpax be the minimum and maximum value recorded
for the metric m during the smoothness analysis. Instead of
the smoothed slider value v, interpolating between the range of
values p can take, it instead interpolates between the possible
metric values. That is, we calculate the target metric value myg
as follows:

Mgt = Mypin + (mmax - mmin) X Vs.

We then record the corresponding parameter value for myg
in the smoothness analysis (i.e., we find the p such that (py,
Mug) lies on the smoothness graph). We set the parameter p to
this value. This has the effect of setting the parameter value based
on the expectation of linear smoothness: moving 10% along the
slider always results in moving 10% along the range of metric
outputs, the user is simply unaware of the actual impact on the
parameter being edited. Figs. 6 and 7 show outputs from the
cellular automata cave generator mentioned earlier. In Fig. 6,
the outputs are from the unsmoothed parameter slider, setting
the parameter to one-quarter intervals. Note how the caves are
very fragmented at 50% slider value, and completely solid by
75%. In Fig. 7, we see the same slider values but for a smoothed
slider. The 50% point on the slider now represents a 50% point
between maximum and minimum density, and at 75% there is
still a lot of open space. The useful range of parameter values
has been extended to take up more of the slider’s range.

IEEE TRANSACTIONS ON GAMES, VOL. 14, NO. 3, SEPTEMBER 2022

(@) (b) ©

Fig. 6. Results from three intervals across the range of an unsmoothed param-
eter slider, e.g., 25% represents a parameter value 25% between minimum and
maximum value. (a) 25% of range. (b) 50% of range. (c) 75% of range.

(@) (d) (©

Fig. 7. Results from three intervals across the range of the smoothed version
of the slider shown in Fig. 6. (a) 25% of range. (b) 50% of range. (c) 75% of
range.

Currently, parameter smoothing can only be applied to pa-
rameters whose smoothness is monotonically increasing or de-
creasing. In [18], we suggest that parameter smoothing may
be possible on nonmonotonically smooth parameters by parti-
tioning the smoothness curve into segments, each of which are
either monotonically increasing or decreasing, and smoothing
each segment individually. We intend to pursue this in the next
major version of Danesh.

C. Codependence

Codependence is an extended form of smoothness analysis
that visualizes the relationship between two parameters p; and
p2 with respect to a metric m. Smoothness analysis attempts
to resolve confusion arising out of unexpected behavior when
changing a parameter; whereas codependence analysis attempts
to solve another problem, in which a change to one parameter
causes a change in behavior in another parameter. To perform
a codependency analysis, we perform successive smoothness
analyzes of p; with respect to m. For each smoothness analysis,
we vary the value of ps between its minimum and maximum
values at regular intervals, similar to how we vary the value
of p; in a regular smoothness analysis. The result is a series
of smoothness graphs, which can be plotted together as a 3-D
surface, as shown in Fig. 8.

If two parameters are independent of one another, we expect
the codependence surface to exhibit symmetry along the axis of
p2. However, if the parameters are codependent on one another,
we will see a lack of symmetry. In Fig. 8, we see that the shape
of the surface changes along both axes. This means that as we
change the value of BL, the smoothness of DL changes, and vice
versa. This is not necessarily an effect that can be avoided. In this
example, the two parameters are intrinsically linked as part of the

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

COOK et al.: DANESH: INTERACTIVE TOOLS FOR UNDERSTANDING PROCEDURAL CONTENT GENERATORS 335

Fig. 8. Codependence analysis, comparing the metric density against the
parameters BL and DL for a cellular automata-based generator.

Fig. 9. Parameter sliders, highlighted with colors indicating the effect of the
change just made by the user.

algorithm. Codependence analysis allows us to see exactly how
this link manifests, however, and can also help us understand the
nature of the linking. This can help generative systems designers
understand unusual relationships in their systems. For example,
Fig. 8 has diagonal symmetry, implying here that the density
metric is related to the sum of the two parameters.

D. Applications of Codependence

In addition to being a useful form of analysis on its own,
codependence can also help us augment the tools we design, sim-
ilar to automatic parameter smoothing described earlier in this
section. In Danesh, we have prototyped automatic codependence
highlighting for parameters to warn the user of the anticipated
impact of changes they make. Fig. 9 shows an example of
automatic codependence highlighting in Danesh’s interface.

As the user makes a change to a parameter, we measure the
difference between the smoothness of each parameter before
and after the change (i.e., we sample two slices from the code-
pendency analysis using the old and new parameter values).
We then recolour the name of each parameter based on the
distance between the two slices—redder colours indicating a
larger distance, and thus, a larger expected shift in behavior.
This gives users a way of anticipating how the behavior of their
system changes as they interact with it, without exposing them
to the complexity of the raw analysis.

For more information on smoothness and codependency anal-
ysis, with additional examples and discussion, see [18].

VII. AUTOMATED PARAMETER DISCOVERY

Earlier we described the initial setup of Danesh, which nor-
mally involves annotating fields in the game’s codebase so

that they are recognised as parameters. These parameters are
then used by Danesh’s users, as well as being important for
some of Danesh’s more complex features such as automatic
parameterization.

From a user perspective, having to manually identify param-
eters poses a few potential problems. Recall that one of the
aims of this tool is to provide a powerful and intuitive way to
interact with procedural generators for nonprogrammers, or for
less experienced users who are working with code written by
a third party (e.g., open-source code found online, or a tool
written by a team member). In this instance, the user may find it
hard or impossible to know what fields need annotating. At the
same time, even experienced users who are working with their
own code may not be aware of all of the fields that impact the
generator’s output, and might benefit from a deeper analysis of
the generator.

To solve these problem, Danesh can perform an automated
parameter discovery process to identify fields, which could be
used as parameters, and then integrate them into the tool without
needing manual annotation. This not only lowers the barrier to
entry for new users, but it can also provide surprising discoveries
and helps foster a deeper understanding of the system for expert
users.

1) Parameter Assessment: Danesh performs parameter dis-
covery by searching through the entire codebase using C#’s
metaprogramming features to look for any accessible field (in its
current implementation, it also ignores visibility modifiers, such
as private). We currently only consider fields, which have a
numeric type (e.g., £loat, int) or a boolean type. When a
field is discovered through this search, Danesh performs tests to
assess whether it has an impact on the generator.

Before performing any assessment, we record a baseline for
the current behavior of the generator. We perform a similar
process to that of an ERA: we sample the generator 100 times,
and for each metric function m, we calculate the average value,
mm, and standard deviation, m?, for each defined Metric function.
We also record the time taken to calculate this sample, which
we use later.

We then attempt to discover plausible upper and lower limits
for the parameter, by slowly growing limits out from a default
starting point. An interval value, 9, is initially defined based on
the field’s type: 1 for integer types, 0.1 for floating point types.
We then create two new variables v,, and v; representing the
upper and lower bound of the field, respectively, and initialize
them to the original parameter value.

We then repeat the following process: add § to v, and set
the field’s value to the new value; calculate a new set of sample
outputs and calculate 72 and m® for the generator’s new configu-
ration; record these values; increase the value of §. We repeat this
process for a fixed number of iterations (currently 100 iterations
by default) or until one of three early stopping conditions are met.
The first is any catchable exception is thrown, this suggests the
parameter has been set outside of expected bounds. The second
is that the time taken to generate a sample exceeds ten times the
original generation baseline, this suggests it has exceeded the
reasonable range intended for the system. Finally, if the change
in T between this value for v,, and the previous value is less

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

336

than the standard deviation for this sample, for all metrics, we
consider it to have not meaningfully changed, and terminate.
That is, if

This process is repeated for v; as well, subtracting the § each
iteration rather than adding it. Each iteration, the value of §
is increased by 10 x (i + 1) where 4 is the current number of
passed iterations. Once both the upper and lower bound searches
have terminated, this gives us a maximum range to set the
parameters within. However, in the event of early termination
due to crashes or time penalties, the last values for the bounds
may not be valid (i.e., they may result in crashes or excessive
execution times). Therefore, we perform another round of search
to find a good bounds value in the range between the last and
penultimate values for each bound. Let v, be the bound value
being finalised, and v,, be the penultimate value of the bound
that is the bound in the last-but-one iteration. We repeatedly set
v = % and then retest the new value of v. If it causes a
crash or exceeds the time limit, we repeat the process until it
passes both tests.

This provides us with a good estimation of the absolute limits
for the parameter that both do not negatively affect the procedural
generator, while also ensuring they have a meaningful impact
on the procedural generator. We then present the user with a
final confirmation prompt. This allows the user to rename the
parameter (by default, we suggest the field’s name) and they can
also edit the upper and lower bounds if they disagree with the
discovered values. Once they confirm, the parameter appears in
the parameter list, as seen in Fig. 1.

2) Preliminary Experimentation: In our tests, automatic pa-
rameter discovery has managed to rediscover all of the manually
annotated parameters in our example generators. It made several
other suggestions, which were not manually tagged but made
sense to modify (such as the dimensions of the map for a maze
generator), and in one case found a parameter that surprised us.
The surprising parameter was attached to a world map genera-
tor based on the diamond-square algorithm; Danesh suggested
controlling a parameter, which governs the rate at which the
algorithm executes and terminates. We had not considered using
this to customize the generator, but by changing it to lower or
higher values it simulates a “camera zoom” effect on the map,
effectively changing the resolution of the underlying random
noise. This shows how even in simple example generators this
technique can find unusual control affordances.

In terms of bounds estimation, Danesh is able to find safe
boundary values for parameters with a good confidence—in
our experiments on three generators with over a dozen expert-
configured parameter bounds, none of Danesh’s bounds esti-
mates resulted in crashes, slow processing or other undesir-
able outputs. There are two weaknesses to the process, which
stand out immediately, however. The first is that Danesh can-
not identify common-sense boundaries for parameters, such as
those with an implicit constraint of being greater than zero. In
many cases setting these parameters to a negative value does
not actually cause a crash, but is something that could never
actually happen in practice, and thus, Danesh’s suggestions are

IEEE TRANSACTIONS ON GAMES, VOL. 14, NO. 3, SEPTEMBER 2022

less useful. The second is that because we do not know how
many parameter candidates Danesh might find, we have tuned
the search to not spend too long on each bounds estimation,
which can result in Danesh not refining the bounds as much in
the second phase.

Despite these limitations, this feature works well for its
intended purpose, which is to provide the user with a set of
safe initial values while they investigate the affordances of a
newly discovered parameter. An expert user will likely be able
to quickly set better values, while a less experienced user is
guaranteed that this range of values, although possibly esoteric,
will not crash the system and will provide varied output.

One limitation of the search process is that it is unaware of
side effects in the codebase. When Danesh tests a field to see if it
can be used as a parameter, it records the original value and sets
it back to this value after testing. However, during the testing
process, it can potentially run the generator in a configuration
that the user did not expect, which can cause values elsewhere
within the generator to be updated. Consider a simple example
where there is a boolean which, if set to true, causes some user
data to be reset when the generator is run. While this boolean
can be set back to its original value, the side effect of resetting
the user data cannot be anticipated or easily detected.

While most of these changes would be reset when unity is
closed, they persist while Danesh is running and so will affect
future interactions with the tool until the program is shut down
and relaunched. These changes may be hard to detect, especially
for users unfamiliar with the codebase, and often affect fields
which are not surfaced by unity’s user interface, which makes
them hard to reset without a full relaunch of the software. One of
the reasons for this arises from how unity handles default values
for objects. If an object exists in a game scene in unity, public
fields in its scripts will be visible in the tool and can have their
default values changed. This overrides any default values set in
code. However, Danesh’s parameter discover process can change
the values of nonpublic fields. Despite not being displayed in
unity’s interface, these changes nevertheless exhibit the same
kind of overriding behavior, which we believe is unity detecting
a change in the value and persisting it even though the field is
not displayed or editable in the interface.

As aresult, this feature has remained labeled as experimental.
While we believe the fundamental technique is useful and ef-
fective, it is not entirely reliable or safe to use in the current
environment. In the future, we are considering a version of
Danesh that is disconnected from unity, which would make it
easier to control, which changes persist, as well as making it
easier to detect side effects during execution. We also plan to
test this feature on larger generators as part of more established
codebases, with many more parameters to test and evaluate.

VIII. LESSONS LEARNED
A. Platform Development

A crucial decision made early in Danesh’s development was
whether the software should be developed a standalone tool,
or as part of an existing platform (and if so, which one). An
important aim of ours was to support people across a wide

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

COOK et al.: DANESH: INTERACTIVE TOOLS FOR UNDERSTANDING PROCEDURAL CONTENT GENERATORS 337

spectrum of abilities and, therefore, embedding the tool in an
existing platform that was already well-known to students and
hobbyists made sense. We chose unity over its competitors (in
particular, unreal has grown in popularity over the last few years)
partly because it has a reputation for being used by people new
to game development, as well as for adjacent domains such as
digital art projects, while unreal and cryengine are seen as tools
more exclusively targeting professional use.

There are several drawbacks to embedding the tool in an
existing platform. Despite its popularity, unity is not used by
every game developer, and thus, there are many people unable
to use Danesh in its current form. Developing the tool as a
standalone application would have made it more universal. There
are also stigmas associated with unity (both from a technical
performance standpoint, and a consumer perception of engine
quality), although this is not a huge concern for us as we are
mostly targeting existing unity users.

Using an existing platform had many advantages. Unity’s
built-in user interface API is relatively simple to use, and al-
lowed us to quickly prototype and iterate on Danesh’s interface.
Although the interface is not particularly nice to look at, it is
functional and smoothly integrates with unity’s existing toolset.
Developing a plugin for unity also allowed us to distribute
the plugin on unity’s Asset Store, which extended our reach
far beyond simply advertising an open-source project. For an
academic project, however, there are downsides to the asset
store: while we initially received favourable reviews for the tool,
a new version of unity was released, which caused Danesh to
be incompatible. Despite the compatible versions being clearly
marked on the Asset Store page, we nevertheless received com-
plaints and negative reviews for not updating the plugin fast
enough. Without a dedicated developer, it is hard to guarantee
support for a tool like this, but this is an expectation many Asset
Store users had of anything listed online.

B. Generality and Usability

One of Danesh’s most important design tenets is that it is
agnostic to the type of content being generated, meaning it can
be adapted to work with generators working in any kind of
domain, as well as generative systems outside of videogames.
This was important to us because of the breadth of application
areas for generative software, and the biased focus on certain
types of content in procedural generation research. In order for
this generality to be possible, Danesh requires the user to define
parts of the system, which require specific domain knowledge.
Chief among these are the visualization code that defines how a
piece of content is displayed on the screen, and the metrics that
measure features of a piece of content, which Danesh uses in
almost all of its analytical processes.

This design choice provided Danesh with a huge amount
of flexibility and power, not only in terms of supporting any
kind of generative software, but also the flexibility to mix and
match this code, switching between visualizers for a generator,
or applying the same metrics to two different versions of a level
generator. This generality comes at the expense of usability,
however, because a novice user may not know how to write
a visualizer, or may not know what kind of features they are

most interested in as metrics. This was a significant drawback
for Danesh that limited its usefulness to nonprogrammers. In
particular, we viewed metric definition as part of the initial
setup and configuration process of using Danesh but for many
users, both expert and novice, this is actually an important part
of the process of understanding the procedural generator and
the designer’s goals. In the future, we wish to do more work
developing this aspect of the tool, and making this part of the
process better guided.

IX. FUTURE DIRECTIONS FOR GENERATIVE ANALYSIS

A. Composite Procedural Content Generation

If a user is unhappy with the way their generator produces
content, the most common course of action taken is to adjust
the values of the parameters to change the distribution of the
generated content. This is a time-consuming task, and one
which Danesh was designed to alleviate, by developing better
visualization and feedback for editing, as well as by introducing
automated techniques for searching the parameter space.

This approach to designing procedural content generators has
drawbacks. It assumes the existence of a single parameterization
that satisfies all of the designer’s criteria, which may not exist,
particularly if it involves offering a large distribution of content
types with conflicting features (for example, a cave generator
that sometimes generates winding mazes, and other times gen-
erates large arenas). Even with automatic search, it may not be
possible to satisfy designer goals.

It is also a very limited way of thinking about content gener-
ation. Commonly in games, a content generation task is solved
by implementing a single procedural content generator and
always sampling from it. Games occasionally break from this
pattern—No Man’s Sky, for instance, provides different template
corpora to its generator based on the planet type, so a very hostile
creature will draw body components from a different set of
3-D models than a docile creature. This provides higher level
variety—content is sampled not just from a single distribution,
but many distributions defined by the selected corpus of source
material.

We propose a generalization of this approach, which we call
composite procedural content generation (CPCG), whereby a
procedural generator is modeled not as a single algorithm but
as a weighted sampling of many different generative algorithms
producing the same kind of content, which may be parameteriza-
tions of the same generator, or different algorithms altogether.
Note this is different from orchestrating generators producing
different kinds of content [19]. Instead, our aim is synthesise a
new generative space as a union of several existing generative
subspaces.

A simple CPCG system would sample from several different
parameterizations of the same generator, with different proba-
bilities assigned to each paramaterization. Danesh would be able
to show the ERA both of individual parameterizations, as well as
an ERA of the whole CPCG system, allowing the user to inspect
individual generative systems as well as the distribution of the
higher level meta-generator.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

B. Interactive Tool Configuration

A recurring piece of feedback for Danesh is the difficulty of
initially configuring the system. We have made many improve-
ments in this area, such as automatic parameter discovery and
automated metric searches. The definition of metrics, however, is
a particularly important part of using the tool, and the quality of
metrics depends on the user. Even in expert use cases, users may
not know what they are looking for, and the metrics they write
are limited by the properties of their content they are currently
considering.

We believe that an important aspect of future generative
assistance tools is in being able to help the user explore their
own needs and interested as part of using and configuring the
tool. This could mean, for example, being able to interactively
define metrics by identifying positive and negative examples
of a particular property and using machine learning approaches
to try and infer possible models for metrics from this. The use
of curious agents to explore the possibility space and identify
styles, clusters, or interesting features will also help users come
to terms with the vast spaces and combinatorial complexity of
the generators they are working with.

Even for tools that are more specialised than Danesh, perhaps
focusing on a specific generative use-case such as Ropossum,
this kind of research is increasingly important. As we described
in Section I when quoting Grant Duncan, users are keen for more
control and understanding of generative systems. Tools like this
must be able to teach their users as they work, because each
generative system is in itself a new learning experience, with its
own unique foibles and eccentricities. As we stated earlier in this
article, one of our goals with Danesh was to shift the user’s focus
from input parameters to thinking about outputs and the function
of the generator within a game or system. This can be achieved
through better visualization and analysis, but also needs better
ways for the user to express intent and interest, too.

X. CONCLUSION

In this article, we describe the development of Danesh, a tool
for analyzing procedural generators that plugs into the popular
unity game development environment. We showed how Danesh
was designed to be as general as possible, allowing it to be
connected to a game’s codebase directly, with customized visual-
izations, and user-written evaluatory metrics. We described how
we use this foundation to provide rich analytical capabiltiies,
including automated ERA, interactive generative space search,
interaction smoothing, and parameter discovery. These features
show off a range of techniques for working with generative
systems, from fully automated to fully user-driven. All of these
approaches yield interesting results and lend themselves toward
different kinds of aims when using the software.

We also used this article as an opportunity to reflect on the
development of the project for the first time. We discussed the
tradeoffs made in trying to build a tool that was as general
as possible while still being useful, and how our decision to
integrate with unity worked.

IEEE TRANSACTIONS ON GAMES, VOL. 14, NO. 3, SEPTEMBER 2022

Generative systems require a new and unusual way of thinking
about data, content, and processes in order to get the most out
of them. Yet we lack good ways to communicate and teach
these ideas and modes of thinking, which means that ideas like
procedural generation often gain a reputation for being obtuse,
hard to learn and resistant to control. Many things can be done
to overcome these issues, but chief among them is to build tools
that help people access and explore these ideas in a structured
way, and without relying purely on reading program code.

ACKNOWLEDGMENT
The authors would like to thank J. Van Hove for his support
of Danesh, and the reviewers for their insightful comments.

REFERENCES
[1

—

Interactive Data Visualisation, “Speedtree,” 2000. [Online]. Available:
http://www.speedtree.com

P. Weir, “The sound of No Man’s Sky,” 2017. [Online]. Available: https:
//tinyurl.com/nmssound
Inkle, “Ink (language),”
inklestudios.com/ink/

[4] G. Duncan, “No Man’s Sky: How i learned to love procedural art,” 2015.
[Online]. Available: https://tinyurl.com/nmsartgdc

D. Saas, “No Man’s Sky evokes wonder through math,” 2016. [Online].
Available: https://tinyurl.com/nmspress

G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proc. 5th Int. Conf. Found. Digit. Games, 2010, pp.
209-216.

A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient sketchbook:
Computer-aided game level authoring,” in Proc. 8th Conf. Found. Digit.
Games, pp. 213-220, 2013.

[8] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proc. FDG Workshop Procedural Content Gener. Games,
pp. 1-72010.

G. Smith, J. Whitehead, M. Mateas, M. Treanor, J. March, and M. Cha,
“Launchpad: A rhythm-based level generator for 2-D platformers,” IEEE
Trans. Comput. Intell. AI Games, vol. 3, no. 1, pp. 1-16, Mar. 2011.

A. Canossa and G. Smith, “Towards a procedural evaluation technique:
Metrics for level design,” in Proc. 10th Int. Conf. Found. Digit. Games,
pp. 69-77, 2015.

[11] J.R.H.Marino, W. M. P. Reis, and L. H. S. Lelis, “An empirical evaluation
of evaluation metrics of procedurally generated Mario levels,” in Proc. 11th
AAAI Conf. Artif. Intell. Interactive Digit. Entertainment, pp. 41-49, 2015.
A. Summerville, “Expanding expressive range: Evaluation methodologies
for procedural content generation,” in Proc. 14th AAAI Conf. Artif. Intell.
Interactive Digit. Entertainment, pp. 420-428, 2018.

A. Summerville et al., “Procedural content generation via machine learn-
ing (PCGML),” IEEE Trans. Games, vol. 10,no0. 3, pp. 257-270, Sep. 2018.
J.Zhu, A. Liapis, S. Risi, R. Bidarra, and G. M. Youngblood, “Explainable
Al for designers: A human-centered perspective on mixed-initiative co-
creation,” in Proc. IEEE Conf. Comput. Intell. Games, pp. 1-8, 2018.

J. Xie, C. M. Myers, and J. Zhu, “Interactive visualizer to facilitate game
designers in understanding machine learning,” in Proc. CHI Conf. Hum.
Factors Comput. Syst., pp. 1-6, 2019.

M. Cook, “Generate random cave levels using cellular automata,” 2013.
[Online]. Available: https://tinyurl.com/cook-caves

M. Cook, J. Gow, and S. Colton, “Towards the automatic optimisation
of procedural content generators,” in Proc. IEEE Conf. Comput. Intell.
Games, pp. 1-8, 2016.

M. Cook, J. Gow, G. Smith, and S. Colton, “General analytical techniques
for parameter-based procedural content generators,” in Proc. Ist IEEE
Conf. Games, pp. 33-39, 2019.

A. Liapis, G. N. Yannakakis, M. J. Nelson, M. Preuss, and R. Bidarra,
“Orchestrating game generation,” IEEE Trans. Games, vol. 11, no. 1,
pp. 48—68, Mar. 2019.

2

—

[3 2021. Available:

—

[Online]. https://www.

[5

[t}

[6

—_

[7

—

[9

—

[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 21,2023 at 01:12:32 UTC from IEEE Xplore. Restrictions apply.

http://www.speedtree.com
https://tinyurl.com/nmssound
https://www.inklestudios.com/ink/
https://tinyurl.com/nmsartgdc
https://tinyurl.com/nmspress
https://tinyurl.com/cook-caves

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

